European Journal of Forest Research

, Volume 135, Issue 5, pp 857–869 | Cite as

Overmature periurban QuercusCarpinus coppice forests in Austria and Japan: a comparison of carbon stocks, stand characteristics and conversion to high forest

  • Viktor J. Bruckman
  • Toru Terada
  • Kenji Fukuda
  • Hirokazu Yamamoto
  • Eduard Hochbichler
Original Paper


Periurban coppice forests have a long history and tradition in Austria, as well as in Japan. Although developed in a slightly different context, such forests faced nearly the same fate during the last century. While these once served biomass almost exclusively as a feedstock for thermal energy, their significance decreased with the increasing use of fossil fuels and coppice management was consequently abandoned, or these forests were converted into high forests with different management aims. This study tries to assess the status of periurban forests that were previously managed as coppice in a comparative approach between Vienna (Austria) and Tokyo (Japan) in view of rising demands for biomass. The focus is to present stand structure, biomass and C stocks, as well as a comparison with high forest in typical stands close to the urban area. In Japan, we further directly assessed the consequences of coppice to high forest conversion on soil chemistry. While lower diameter classes are dominated by Carpinus, Quercus is only found in larger diameter classes, indicating the overmature character of both stands due to the lapse from a recognized system of coppice management with occasional fuelwood harvesting in the past decades. Total C stocks are comparable, but soil organic carbon is significantly higher in Japanese Andosols. The conversion of coppice to high forest in the 1960s in Japan had a notable impact on soil chemistry in our plots. There may be multiple benefits for restoring coppice management to these periurban forests. This includes increased biomass production capabilities and carbon sequestration as well as a better habitat provision and a higher biodiversity.


Coppice Satoyama Biomass Carbon stocks Quercus Carpinus Forest soil 



This project was funded by travel Grants of the Austrian Academy of Sciences, Commission for Interdisciplinary Ecological Studies (KIOES), by the Austrian Federal Ministry of Agriculture, Forestry, Environment and Water Management (Grant No. 100185), and by a visiting scholar appointment at The University of Tokyo, Graduate School of Frontier Sciences, of the corresponding author. The surveys in Japan were funded by Development Funds for Leading Creative Science and Technology, Promotion of Social System Reformation Integrated with Research and Development by MEXT, Japan. We would like to thank Karin Wriessnig for FTIR analysis, Michael Tatzber for discussing the results and Otto Eckmüllner for valuable suggestions regarding statistics, as well as all our colleagues and students involved in the stand inventory in Japan and Austria, especially Shuma Tsuji, Kota Kobayashi, Shuhei Abe, Stephan Brabec and Mohan Devkota. We would like to extend our gratitude to several members of the ongoing COST action EUROCOPPICE for valuable discussions and input from anonymous reviewers that helped us to improve the paper.


  1. Antil RS, Gerzabek MH, Haberhauer G, Eder G (2005) Long-term effects of cropped vs. fallow and fertilizer amendments on soil organic matter I. Org Carbon J Plant Nutr Soil Sci 168:108–116. doi: 10.1002/jpln.200421461 CrossRefGoogle Scholar
  2. Asia Biomass Office (2016) Trends in Woody biomass power generation in Japan. Accessed 08 May 2016
  3. Austrian Standards Institute (1999) Chemische Bodenuntersuchungen – Bestimmung des organischen Kohlenstoffs durch trockene Verbrennung [Chemical analyses of soils—determination of organic carbon by dry combustion], vol L 1080–99, edition April 1st. Austrian Standards Institute, ViennaGoogle Scholar
  4. Benes J, Cizek O, Dovala J, Konvicka M (2006) Intensive game keeping, coppicing and butterflies: the story of Milovicky Wood, Czech Republic. For Ecol Manag 237:353–365. doi: 10.1016/j.foreco.2006.09.058 CrossRefGoogle Scholar
  5. Brockett BFT, Prescott CE, Grayston SJ (2012) Soil moisture is the major factor influencing microbial community structure and enzyme activities across seven biogeoclimatic zones in western Canada. Soil Biol Biochem 44:9–20. doi: 10.1016/j.soilbio.2011.09.003 CrossRefGoogle Scholar
  6. Bruckman VJ, Wriessnig K (2013) Improved soil carbonate determination by FT-IR and X-ray analysis. Environ Chem Lett 11:65–70. doi: 10.1007/s10311-012-0380-4 CrossRefPubMedGoogle Scholar
  7. Bruckman VJ, Yan S, Hochbichler E, Glatzel G (2011) Carbon pools and temporal dynamics along a rotation period in Quercus dominated high forest and coppice with standards stands. For Ecol Manag 262:1853–1862. doi: 10.1016/j.foreco.2011.08.006 CrossRefGoogle Scholar
  8. Ciancio O, Nocentini S (2004) The coppice forest. Silviculture, regulation, management. In: Accademia Scienze Forestali (ed) Il bosco ceduo. Selvicoltura, assestamento, gestione. Accademia Italiana di Scienze Forestali, Firenze, pp 679–701Google Scholar
  9. Darvill T (1987) Ancient monuments in the countryside: an archaeological management review, vol 5. In: English Heritage, archaeological report, vol no 5. Historic Buildings & Monuments Commission for England, LondonGoogle Scholar
  10. Evans J (1992) Coppice forestry—an overview. In: Buckley GP (ed) Ecology and management of coppice woodlands. Chapman and Hall, London, pp 18–29CrossRefGoogle Scholar
  11. Garrido E, Matus F (2012) Are organo-mineral complexes and allophane content determinant factors for the carbon level in Chilean volcanic soils? CATENA 92:106–112. doi: 10.1016/j.catena.2011.12.003 CrossRefGoogle Scholar
  12. Godbold D et al (2006) Mycorrhizal hyphal turnover as a dominant process for carbon input into soil organic matter. Plant Soil 281:15–24. doi: 10.1007/s11104-005-3701-6 CrossRefGoogle Scholar
  13. Haneca K, van Acker J, Beeckman H (2005) Growth trends reveal the forest structure during Roman and Medieval times in Western Europe: a comparison between archaeological and actual oak ring series (Quercus robur and Quercus petraea). Ann For Sci 62:797–805CrossRefGoogle Scholar
  14. Hédl R, Kopecký M, Komárek J (2010) Half a century of succession in a temperate Oakwood: from species-rich community to mesic forest. Divers Distrib 16:267–276. doi: 10.1111/j.1472-4642.2010.00637.x CrossRefGoogle Scholar
  15. Hochbichler E (1993) Methods of oak silviculture in Austria. Ann For Sci 50:583–591CrossRefGoogle Scholar
  16. Hochbichler E (2008) Fallstudien zur Struktur, Produktion und Bewirtschaftung von Mittelwäldern im Osten Österreichs (Weinviertel). Forstliche Schriftenreihe; 20. Österr. Ges. für Waldökosystemforschung und Experimentelle Baumforschung Univ. für Bodenkultur, WienGoogle Scholar
  17. Hochbichler E (2009) Coppice forestry in Austria. In: Marusak R, Kratochvilova Z, Trnkova E, Hajnala M (eds) Wildlife and wood sciences for society development. Forest, wildlife and wood sciences for society development. Czech University of Life Sciences in Prague, Faculty of Forestry and Wood Sciences, Prague, pp 19–35Google Scholar
  18. Hochbichler E, Spinka S, Glatzel G, Bruckman VJ, Grieshofer H (2009) Untersuchungen zur Dynamik der Biomassen- und Kohlenstoffvorräte in Niederwäldern mit Überhälter. Mittel- und Hochwäldern, Institut für Waldbau, BOKU University, ViennaGoogle Scholar
  19. Ichikawa K, Okubo N, Okubo S, Takeuchi K (2006) Transition of the satoyama landscape in the urban fringe of the Tokyo metropolitan area from 1880 to 2001. Landsc Urban Plan 78:398–410. doi: 10.1016/j.landurbplan.2005.12.001 CrossRefGoogle Scholar
  20. Inui T (1996) History and utilization of coppice woodlands in the Kanto Plain. Shinrin-Kagaku 18:15–20 (in Japanese) Google Scholar
  21. Ito M, Shigeta M, Tamura N, Hayashi F (2015) Do phenolic contents of two oak species leaves affect seasonal feeding behavior of the giant flying squirrels? In: Paper presented at the 62nd Annual Meeting of the Ecological Society of Japan (ESJ62), Kagoshima, 19.03.2015Google Scholar
  22. IUSS Working Group WRB (2014) World reference base for soil resources 2014: international soil classification system for naming soils and creating legends for soil maps. FAO, RomeGoogle Scholar
  23. Japan Forestry Committee (2003) Stumpage stem volume tables. Japan Forestry Committee, TokyoGoogle Scholar
  24. Japan Wood Energy Co. Ltd (2015) Open image in new window [Map of national woody biomass power plants]. Accessed 05 Aug 2015 (in Japanese)
  25. Johnson DW, Curtis PS (2001) Effects of forest management on soil C and N storage: meta analysis. For Ecol Manag 140:227–238CrossRefGoogle Scholar
  26. Kadoya T, Washitani I (2011) The Satoyama Index: a biodiversity indicator for agricultural landscapes. Agric Ecosyst Environ 140:20–26. doi: 10.1016/j.agee.2010.11.007 CrossRefGoogle Scholar
  27. Keith H, Mackey BG, Lindenmayer DB (2009) Re-evaluation of forest biomass carbon stocks and lessons from the world’s most carbon-dense forests. Proc Natl Acad Sci 106:11635–11640. doi: 10.1073/pnas.0901970106 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Kopecký M, Hédl R, Szabó P (2013) Non-random extinctions dominate plant community changes in abandoned coppices. J Appl Ecol 50:79–87. doi: 10.1111/1365-2664.12010 CrossRefGoogle Scholar
  29. Kraus TEC, Dahlgren RA, Zasoski RJ (2003) Tannins in nutrient dynamics of forest ecosystems—a review. Plant Soil 256:41–66. doi: 10.1023/a:1026206511084 CrossRefGoogle Scholar
  30. Kuramoto N, Sonoda Y (2003) Biological diversity in Satoyama landscapes. In: Takeuchi K, Brown R, Washitani I, Tsunekawa A, Yokohari M (eds) Satoyama. Springer, Japan, pp 81–109. doi: 10.1007/978-4-431-67861-8_4 CrossRefGoogle Scholar
  31. Lahoda J, Arndt O, Hanstein W (2006) Biomass looking for efficient utilization—the reheat concept. Siemens Power Generation (PG), BrnoGoogle Scholar
  32. Lamlom SH, Savidge RA (2003) A reassessment of carbon content in wood: variation within and between 41 North American species. Biomass Bioenerg 25:381–388CrossRefGoogle Scholar
  33. Lassauce A, Anselle P, Lieutier F, Bouget C (2012) Coppice-with-standards with an overmature coppice component enhance saproxylic beetle biodiversity: a case study in French deciduous forests. For Ecol Manag 266:273–285. doi: 10.1016/j.foreco.2011.11.016 CrossRefGoogle Scholar
  34. Loades M (2005) Wetwang: a chariot fit for a queen? BBC. Accessed 25 Oct 2015
  35. Lorenz K, Preston CM, Raspe S, Morrison IK, Feger KH (2000) Litter decomposition and humus characteristics in Canadian and German spruce ecosystems: information from tannin analysis and 13C CPMAS NMR. Soil Biol Biochem 32:779–792. doi: 10.1016/S0038-0717(99)00201-1 CrossRefGoogle Scholar
  36. Madlener R, Kowalski K, Stagl S (2007) New ways for the integrated appraisal of national energy scenarios: the case of renewable energy use in Austria. Energy Policy 35:6060–6074. doi: 10.1016/j.enpol.2007.08.015 CrossRefGoogle Scholar
  37. Matula R, Svátek M, Kůrová J, Úradníček L, Kadavý J, Kneifl M (2012) The sprouting ability of the main tree species in Central European coppices: implications for coppice restoration. Eur J For Res 131:1501–1511. doi: 10.1007/s10342-012-0618-5 CrossRefGoogle Scholar
  38. Ministry of the Environment Japan (2015) National greenhouse gas inventory report of Japan. Ministry of the Environment Japan, TokyoGoogle Scholar
  39. Müllerová J, Hédl R, Szabó P (2015) Coppice abandonment and its implications for species diversity in forest vegetation. For Ecol Manag 343:88–100. doi: 10.1016/j.foreco.2015.02.003 CrossRefGoogle Scholar
  40. Nioh I (1980) Nitrogen fixation associated with the leaf litter of Japanese cedar (Cryptomeria japonica) of various decomposition stages. Soil Sci Plant Nutr 26:117–126CrossRefGoogle Scholar
  41. Prescott CE, Zabek LM, Staley CL, Kabzems R (2000) Decomposition of broadleaf and needle litter in forests of British Columbia: influences of litter type, forest type, and litter mixtures. Can J For Res 30:1742–1750. doi: 10.1139/x00-097 CrossRefGoogle Scholar
  42. Provenzano MR, Senesi N (1999) Thermal properties of standard and reference humic substances by differential scanning calorimetry. J Therm Anal Calorim 57:517–526. doi: 10.1023/A:1010176326691 CrossRefGoogle Scholar
  43. R Core Team (2015) R: a language and environment for statistical computing, 3.2.1 (2015-06-18) edn. R foundation for statistical computing, Vienna, AustriaGoogle Scholar
  44. Rackham O (1980) Ancient woodland: its history, vegetation and uses in England. Edward Arnold, LondonGoogle Scholar
  45. Reiter R, Sieghardt M, Ottner F, Glatzel G (2001) Exkursion W1-Waldböden des nordöstlichen Wienerwaldes “Rund um den Kolbeterberg”. In: Hugenroth P (ed) Mitteilungen der Deutschen Bodenkundlichen Gesellschaft 94, vol 94. Oldenburg, pp 1–25Google Scholar
  46. Sakellariadou F (2006) Spectroscopic studies of humic acids from subsurface sediment samples collected across the Aegean Sea. Mediterr Mar Sci 7:11–17CrossRefGoogle Scholar
  47. Schütz J-PH (2001) Der Plenterwald und weitere Formen strukturierter und gemischter Wälder. Parey, BerlinGoogle Scholar
  48. Senesi N, D’Orazio V, Ricca G (2003) Humic acids in the first generation of EUROSOILS. Geoderma 116:325–344. doi: 10.1016/S0016-7061(03)00107-1 CrossRefGoogle Scholar
  49. Shi J, Ohte N, Tokuchi N, Imamura N, Nagayama M, Oda T, Suzuki M (2014) Nitrate isotopic composition reveals nitrogen deposition and transformation dynamics along the canopy–soil continuum of a suburban forest in Japan. Rapid Commun Mass Spectrom 28:2539–2549. doi: 10.1002/rcm.7050 CrossRefPubMedGoogle Scholar
  50. Shi J et al (2015) Soil nitrogen transformation dynamics in a suburban forest near Tokyo Metropolitan Area under high nitrogen deposition: A case study using stable isotope tracer techniques. Bull Univ Tokyo For 132:17–34Google Scholar
  51. Spinelli R, Ebone A, Gianella M (2014) Biomass production from traditional coppice management in northern Italy. Biomass Bioenergy 62:68–73. doi: 10.1016/j.biombioe.2014.01.014 CrossRefGoogle Scholar
  52. Takahashi M et al (2010) Carbon stock in litter, deadwood and soil in Japan’s forest sector and its comparison with carbon stock in agricultural soils. Soil Sci Plant Nutr 56:19–30. doi: 10.1111/j.1747-0765.2009.00425.x CrossRefGoogle Scholar
  53. Takeuchi K (2003) The nature of Satoyama landscapes. In: Takeuchi K, Brown R, Washitani I, Tsunekawa A, Yokohari M (eds) Satoyama. Springer, Japan, pp 9–39. doi: 10.1007/978-4-431-67861-8_2 CrossRefGoogle Scholar
  54. Tanaka N, Shimomura K, Ishimaru K (1995) Tannin production in callus cultures of Quercus acutissima. Phytochemistry 40:1151–1154. doi: 10.1016/0031-9422(95)00378-K CrossRefGoogle Scholar
  55. Tatzber M, Mutsch F, Mentler A, Leitgeb E, Englisch M, Gerzabek MH (2011a) Capillary electrophoresis characterisation of humic acids: application to diverse forest soil samples. Environ Chem 8:589–601. doi: 10.1071/EN11054 CrossRefGoogle Scholar
  56. Tatzber M et al (2011b) Mid-infrared spectroscopy for topsoil layer identification according to litter type and decompositional stage demonstrated on a large sample set of Austrian forest soils. Geoderma 166:162–170. doi: 10.1016/j.geoderma.2011.07.025 CrossRefGoogle Scholar
  57. Tatzber M, Stemmer M, Spiegel H, Katzlberger C, Landstetter C, Haberhauer G, Gerzabek MH (2012) 14C-labeled organic amendments: characterization in different particle size fractions and humic acids in a long-term field experiment. Geoderma 177–178:39–48. doi: 10.1016/j.geoderma.2012.01.028 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Terada T, Yokohari M, Bolthouse J, Tanaka N (2010) Refueling Satoyama woodland restoration in Japan: enhancing restoration practice and experiences through woodfuel utilization. Nat Cult 5:251–276. doi: 10.3167/nc.2010.050303 CrossRefGoogle Scholar
  59. Tsuchiya K, Okuro T, Takeuchi K (2013) The combined effects of conservation policy and co-management alter the understory vegetation of urban woodlands: a case study in the Tama Hills area, Japan. Landsc Urban Plan 110:87–98. doi: 10.1016/j.landurbplan.2012.10.013 CrossRefGoogle Scholar
  60. Tsunekawa A (2003) Satoyama landscape transition. In: Takeuchi K, Brown R, Washitani I, Tsunekawa A, Yokohari M (eds) Satoyama. Springer, Japan, pp 41–79. doi: 10.1007/978-4-431-67861-8_3 CrossRefGoogle Scholar
  61. Ugawa S et al (2012) Carbon stocks of dead wood, litter, and soil in the forest sector of Japan: general description of the National Forest Soil Carbon Inventory. Bull FFPRI 11:207–221Google Scholar
  62. Vacik H, Zlatanov T, Trajkov P, Dekanic S (2009) Role of coppice forests in maintaining forest biodiversity Silva. Balcanica 10:35–45Google Scholar
  63. Vande Walle I, Mussche S, Samson R, Lust N, Lemeur R (2001) The above- and belowground carbon pools of two mixed deciduous forest stands located in East-Flanders (Belgium). Ann For Sci 58:507–517CrossRefGoogle Scholar
  64. Washitani I (2001) Traditional sustainable ecosystem ‘Satoyama’ and biodiversity crisis in Japan: conservation ecological perspective. Glob Environ Res 5:119–133Google Scholar
  65. Yamanaka T, Hirai K, Aizawa S, Yoshinaga S, Takahashi M (2011) Nitrogen-fixing activity in decomposing litter of three tree species at a watershed in eastern Japan. J For Res 16:1–7. doi: 10.1007/s10310-010-0201-1 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Viktor J. Bruckman
    • 1
  • Toru Terada
    • 2
  • Kenji Fukuda
    • 3
  • Hirokazu Yamamoto
    • 3
  • Eduard Hochbichler
    • 4
  1. 1.Commission for Interdisciplinary Ecological Studies (KIOES)Austrian Academy of Sciences (ÖAW)ViennaAustria
  2. 2.Department of Urban EngineeringThe University of TokyoBunkyoJapan
  3. 3.Graduate School of Frontier SciencesThe University of TokyoKashiwaJapan
  4. 4.Institute of SilvicultureUniversity of Natural Resources and Life Sciences (BOKU)ViennaAustria

Personalised recommendations