Skip to main content

Advertisement

Log in

Soil erodibility and quality of volcanic soils as affected by pine plantations in degraded rangelands of NW Patagonia

European Journal of Forest Research Aims and scope Submit manuscript

Abstract

NW Patagonia in Argentina has high potential for planting fast-growing exotic conifers, supported by its volcanic soils. Nonetheless, many aspects related to the effects of pine plantations on soil are still unknown. We aimed to evaluate the quality and erodibility of volcanic soils under the hypothesis that Pinus ponderosa plantations increase the quality and decrease the erosion rate of soils compared to degraded rangelands. Rainfall simulation experiments were performed in degraded rangeland soils and in pine plantations with none, partial and complete removal of fresh litter and duff layers. Results showed that rangeland soils were highly susceptible to water erosion. Sediment production in the rangeland varied between 144 and 750 g m−2. Loamy sand soils, poor in organic matter (OM) and without non-crystalline aluminosilicates, were the most erodible soils. The plantations improved soil quality, with positive changes in OM content and total and effective porosity, mainly in soils without non-crystalline materials. Soil erosion in pine plantations was negligible when fresh litter was either conserved or removed, with erosion rates as low as 6.2 ± 1.5 and 23.7 ± 7.9 g m−2, respectively. Even when fresh litter and duff layers were totally removed, soil erosion rates in the pine plantations (129.1 ± 23.2 g m−2) were lower than in the rangeland sites; however, this reduction was significant only for the most erodible soils. The high erodibility of volcanic soils and the low soil cover in overgrazed rangelands revealed the fragility of the soils in the study area. We show that pine plantations, an alternative land use of rangelands, improve some aspects of soil quality, provide a mulching effect through the litter layer and became a mean for controlling soil erosion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Finland)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Amiotti NM, Zalba P, Sánchez LF, Peinemann N (2000) The impact of single trees on properties of loess-derived grasslands soils in Argentina. Ecology 81:3283–3290

    Article  Google Scholar 

  • Apcarian A, Irisarri J (1993) Caracterización mineralógica de suelos desarrollados sobre cenizas volcánicas en las provincias de Neuquén y Río Negro (R.A.). II Jornadas de Vulcanología, Medio ambiente y Defensa Civil. Zapala, Neuquén

  • Ares J, Beeskow AM, Bertiller M, Rostagno M, Irisarri M, Anchorena J, Defossé GE, Merino C (1990) Structural and dynamic characteristics of overgrazed lands of northern Patagonia, Argentina. In: Bremeyer A (ed) Managed grasslands: regional studies. Elsevier, Amsterdam, pp 149–175

    Google Scholar 

  • Avnimelech Y, McHenry J (1984) Enrichment of transported sediments with organic carbon nutrients and clay. Soil Sci Soc Am J 48:259–266

    Article  CAS  Google Scholar 

  • Barros V, Scian B, Matto H (1979) Campos de precipitación en la provincia de Chubut (período 1931–1960). Geoacta 10:175–192

    Google Scholar 

  • Beeskow AM, Elissalde NO, Rostagno CM (1995) Ecosystem change associated with grazing intensity on the Punta Ninfas rangelands of Patagonia, Argentina. J Range Manage 48:517–522

    Article  Google Scholar 

  • Berger TW, Berger P (2012) Greater accumulation of litter in spruce (Picea abies) compared to beech (Fagus sylvatica) stands is not a consequence of the inherent recalcitrance of needles. Plant Soil 358:349–369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bertiller MB (1993) Estepas graminosas de Festuca pallescens en el SW del Chubut. In: Paruelo JM, Bertiller MB, Schlichter TM, Coronato F (eds) Secuencias de deterioro en distintos ambientes Patagónicos. Su caracterización mediante el modelo de Estados y Transiciones, Cooperacion INTA-GTZ, S.C, de Bariloche, pp 14–22

    Google Scholar 

  • Blake B (1965) Bulk density. In: Black CA (ed) Methods of soil analysis Monogr Ser Part 1 No 9 Am Soc Agron, Madison, Winscousin, pp 374–390

  • Broquen P, Falbo G, Frugoni C, Girardin JL, Guido M, Martinese P (2000) Estructura y porosidad en Andisoles con vegetación natural y con plantaciones de Pinus ponderosa Dougl. en el Sudoeste de Neuquén, Argentina. Bosque 21:25–36

    Article  Google Scholar 

  • Broquen P, Falbo G, Apcarián A, Candan F, Girardin J, Pellegrini V (2003) Relaciones entre las forestaciones, la erosión del suelo, y la potencialidad productiva en la transición bosque-estepa (Andinopatagonia, Argentina). Inv Agr Sist y Rec Ftales 12(2):99–110

    Google Scholar 

  • Bryan RB (2000) Soil erodibility and processes of water erosion on hillslope. Geomorphology 32:385–415

    Article  Google Scholar 

  • Buduba CG (2006) Modificaciones en el pH y contenido de materia orgánica en suelos del ecotono estepa/bosque andino patagónico por implantación de pino ponderosa. Dissertation, Universidad de Buenos Aires

  • Cabrera A (1971) Fitogeografía de la República Argentina. Boletín de la Sociedad Argentina de Botánica XIV, p 50

  • Cao L, Liang Y, Wang Y, Lu H (2015) Runoff and soil loss from Pinus massoniana forest in southern China after simulated rainfall. Catena 129:1–8

    Article  Google Scholar 

  • Chartier MP, Rostagno CM (2006) Soil erosion thresholds and alternative states in Northeastern Patagonian Rangelands. Rangeland Ecol Manage 59:616–624

    Article  Google Scholar 

  • Chartier MP, Rostagno CM, Videla LS (2013) Selective erosion of clay, organic carbon and total nitrogen in grazed semiarid rangelands of northeastern Patagonia, Argentina. J Arid Environ 88:43–49

    Article  Google Scholar 

  • Chirino E, Bonet A, Bellot J, Sánchez J (2006) Effects of 30-year-old Aleppo pine plantations on runoff, soil erosion, and plant diversity in a semi-arid landscape in south eastern Spain. Catena 65:19–29

    Article  Google Scholar 

  • Colmet Daage F, Marcolin A, López C, Lanciotti M, Ayesa J, Bran D, Andenmatten E, Broquen P, Girardin J, Cortés G, Irisarri J, Besoain E, Sadzawka A, Sepúlveda G, Massaro S, Millot G, Bouleau P (1988) Características de los suelos derivados de cenizas volcánicas de la cordillera y precordillera del norte de la Patagonia. Convenio INTA – ORSTOM. S. C. de Bariloche, Río Negro

  • Dahlgren RA, Saigusa M, Ugolini FC (2004) The nature, properties and management of volcanic soils. Adv Agron 82:113–182

    Article  CAS  Google Scholar 

  • Davies BE (1974) Loss-on ignition as an estimate of soil organic matter. Soil Sci Pro 38:150

    Article  Google Scholar 

  • Day P (1965) Particle fractionation and particle-size analysis. In: Black CA (ed) Methods of soil analysis Monogr Ser Part 1 No 9 Am Soc Agron, Madison Winscousin, pp 545–567

  • Del Valle HF, Elissalde N, Gagliardini D, Milovich J (1998) Status of desertification in the Patagonian region: assessment and mapping from satellite imagery. Arid Land Res Manag 12(2):95–121

    Article  Google Scholar 

  • Di Rienzo JA, Casanoves F, Balzarini MG, Gonzalez L, Tablada M, Robledo CW (2013) InfoStat versión 2013. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. http://www.infostat.com.ar

  • Doerr S, Shakesby R, Walsh R (1998) Spatial variability of soil hydrophobicity in fire-prone Eucalyptus and Pine forests, Portugar. Soil Sci 163:313–324

    Article  CAS  Google Scholar 

  • Dormaar JF (1992) Decomposition as a natural process in grasslands. In: Coupland RT (ed) Natural grasslands: introduction and Western Hemisphere. Elsevier, New York, pp 121–136

    Google Scholar 

  • Dube F, Thevathasan NV, Stolpe NB, Zagal E, Gordon AM, Espinosa M, Sáez K (2013) Selected carbon fluxes in Pinus ponderosa-based silvopastoral systems, exotic plantations and natural pastures on volcanic soils in the Chilean Patagonia. Agrofor Syst 87:525–542

    Article  Google Scholar 

  • El Kateb H, Zhang H, Zhang P, Mosandl R (2013) Soil erosion and surface runoff on different vegetation covers and slope gradients: a field experiment in Southern Shaanxi Province, China. Catena 105:1–10

    Article  Google Scholar 

  • Epema GF, Riezebos HT (1983) Fall velocity of water drops at different heights as a factor influencing erosivity of simulated rain. Catena Supp 4:1–18

    Google Scholar 

  • Escofier B, Pagès J (1992) Análisis factoriales simples y múltiples: objetivos, métodos e interpretación. Servicio Editorial Argitarapen-Zerbitzua, Bilbao, España

    Google Scholar 

  • Evans RA, Young JA (1970) Plant litter and establishment of alien annual weed species in rangeland communities. Weed Sci 18:697–703

    Google Scholar 

  • Fieldes MP, Perrot KW (1966) The nature of allophane in soils. III. Rapid field and laboratory test for allophane. N Z J Sci 9:623–629

    CAS  Google Scholar 

  • Geißler C, Kühn P, Böhnke M, Bruelheide H, Shi X, Scholten T (2012) Splash erosion potential under tree canopies in subtropical SE China. Catena 174:596–601

    Google Scholar 

  • Gobbi ME, Mazzarino MJ, Ferrari J (2002) Efecto de plantaciones de coníferas sobre la fertilidad del suelo en la Región Andino Patagónica. XVIII Congreso Argentino de la Ciencia del Suelo. Pto, Madryn

    Google Scholar 

  • Golluscio R, Deregibus A, Paruelo J (1998) Sustainability and range management in the Patagonian steppes. Ecol Austral 8:265–284

    Google Scholar 

  • Gómez F, Tarabini M, Buduba C, La Manna L (2015) Distribución de la precipitación en un bosque de pino radiata con manejo silvopastoril versus forestal tradicional. VIII Congreso Internacional de sistemas agroforestales y III Congreso Nacional de sistemas silvopastoriles. Iguazú, Argentina

  • Gonda HE, Cortés GO (2001) Ecuaciones para el manejo de las plantaciones de pino ponderosa en Neuquén. Publicación técnica N° 30. CIEFAP. Esquel, Argentina. p 24

  • Gu ZJ, Wu XX, Zhou F, Luo H, Shi XZ, Yu DS (2013) Estimating the effect of Pinus massoniana lamb plots on soil and water conservation during rainfall events using vegetation fractional coverage. Catena 109:225–233

    Article  Google Scholar 

  • Hall RL, Calder IR (1993) Drop size modification by forest canopies: measurements using a disdrometer. J Geophys Res 98:18465–18470

    Article  Google Scholar 

  • Harper R, Mckissock I, Gilkes R, Carter D, Blackwell P (2000) A multivariate framework for interpreting the effects of soil properties, soil management and land use on water repellency. J Hydrol 231:371–383

    Article  Google Scholar 

  • Helalia AM (1993) The relation between soil infiltration and effective porosity in different soils. Agr Water Manage 24:39–47

    Article  Google Scholar 

  • Irisarri J (2000) La propuesta de reclasificación de los Andepts de Argentina, de acuerdo al Orden Andisoles. Workshop Soil Taxonomy. Instituto Nacional de Tecnología Agropecuaria, AICET, Asociación Argentina de la Ciencia del Suelo, pp 18–27

    Google Scholar 

  • Irisarri J, Mendía J (1997) Relaciones suelo-paisaje en la evaluación de la potencialidad forestal de la región central andino—patagónica, Argentina. Bosque 18:21–30

    Article  Google Scholar 

  • Irisarri JA, Mendía JM, Roca C, Buduba CG, Valenzuela MF, Epele F, Fraseto F, Ostertag G, Bobadilla S, Andenmatten E (1995) Zonificación de lastierras para la aptitud forestal de la Provincia del Chubut. DirecciónGeneral de Bosques y Parques de la Provincia del Chubut, Chubut

  • Irurtia CB, Mon R (1994) Microsimulador de lluvia para determinar infiltración a campo. Instituto de suelos INTA-Castelar. Publicación N° 176

  • Jaramillo Jaramillo DF (2005) Humedad crítica y repelencia al agua en andisoles colombianos bajo cobertura de pinus patula schltdl y cham. Rev Fac Nal Agr Medellín 58(2):2893–2906

    Google Scholar 

  • Jaramillo DF, Dekker LW, Ritsema CJ, Hendrickx JMH (2000) Occurrence of soil water repellency in arid and humid climates. J Hydrol 231–232:105–111

    Article  Google Scholar 

  • Jungerius PD (1975) The properties of volcanic ash soils in dry parts of the Colombian Andes and their relation to soil erodibility. Catena 2:69–80

    Article  Google Scholar 

  • Kurka AM, Starr M (1997) Relationship between decomposition of cellulose in the soil and tree stand characteristics in natural boreal forests. Plant Soil 197:167–175

    Article  CAS  Google Scholar 

  • Laclau P (2003) Biomass and carbon sequestration of ponderosa pine plantations and native cypress forests in northwest Patagonia. For Ecol Manage 180:317–333

    Article  Google Scholar 

  • López Ritas J, López Mélida J (1990) El diagnóstico de suelos y plantas: métodos de campo y laboratorio, 4th edn. Mundi-Prensa, Madrid, España

    Google Scholar 

  • Maestre F, Cortina J (2004) Are Pinus halepensis plantations useful as a restoration tool in semiarid Mediterranean areas? For Ecol Manage 198:303–317

    Article  Google Scholar 

  • McDaniel PA, Lowe DJ, Arnalds O, Ping CL (2012) Andisols. In: Huang PM, Li Y, Sumner ME (eds) Handbook of soil sciences, vol 1, 2nd edn., Properties and processesCRC Press (Taylor & Francis), Boca Raton, FL, pp 29–48

    Google Scholar 

  • Middleton H (1930) Properties of soils which influence soil erosion. Technical Bulletin 178. United States of Agriculture, Washington

  • Montenegro A, Abrantes J, de Lima J, Singh V, Santos T (2013) Impact of mulching on soil and water dynamics under intermittent simulated rainfall. Catena 109:139–149

    Article  Google Scholar 

  • Morales D, Rostagno M, La Manna L (2013) Runoff and erosion from volcanic soils affected by fire: the case of Austrocedrus chilensis forests in Patagonia, Argentina. Plant Soil 370:367–380

    Article  CAS  Google Scholar 

  • Morgan RP (2005) Soil erosion and conservation, 3rd edn. Blackwell, Malden

    Google Scholar 

  • Nosetto M, Jobbágy E, Paruelo J (2006) Carbon sequestration in semi-arid rangelands: comparison of Pinus ponderosa plantations and grazing exclusion in NW Patagonia. J Arid Environ 67:142–156

    Article  Google Scholar 

  • Ogle SM, Paustian K (2005) Soil organic carbon as an indicator of environmental quality at the national scale: inventory monitoring methods and policy relevance. Can J Soil Sci 85:531–540

    Article  CAS  Google Scholar 

  • Parfitt RL, Saigusa M, Cowie JD (1984) Allophane and halloysite formation in a volcanic ash bed under different moisture conditions. Soil Sci 138:360–364

    Article  CAS  Google Scholar 

  • Poulenard J, Podwojewski P, Janeau JL, Collinet J (2001) Runoff and soil erosion under rainfall simulation of Andisols from the Ecuadorian Páramo: effect of tillage and burning. Catena 45(3):185–207

    Article  Google Scholar 

  • Raffaele E, Schlichter T (2000) Efectos de las plantaciones de pino ponderosa sobre la heterogeneidad de micrositios en estepas del noroeste patagónico. Ecol Austral 10:151–158

    Google Scholar 

  • Renard, KG, Foster GR, Weesis GA, McCool DK,Yoder DC (1997) Predicting soil erosion by water: a guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE). USDA, Agricultural Handbook No. 703

  • Rodríguez Rodríguez A, Arbelo C, Guerra J, Mora J (2002) Erosión hídrica en Andosoles de las Islas canarias. Edafologia 9(1):23–30

    Google Scholar 

  • Rodríguez Rodríguez A, Arbelo C, Guerra J, Mora J, Notario J, Armas C (2006) Organic carbon stocks and soil erodibility in Canary Islands Andosols. Catena 66:228–235

    Article  Google Scholar 

  • Rostagno CM (1989) Infiltration and sediment production as affected by soil surface conditions in a shrubland of Patagonia, Argentina. J Range Manage 42:382–385

    Article  Google Scholar 

  • Rostagno CM, Degorgue G (2011) Desert pavements as indicators of soil erosion on aridic soils in north-east Patagonia (Argentina). Geomorphology 134:224–231

    Article  Google Scholar 

  • Schiettecatte W, Gabriels D, Cornelis W, Hofman G (2008) Enrichment of organic carbon in sediment transport by interrill and rill erosion processes. Soil Sci Soc J 72:50–455

    Article  CAS  Google Scholar 

  • Schoeneberger PJ, Wysocky DA, Benham EC, Broderson WD (1998) Field book for describing and sampling soils. Natural Resources Conservation Service, USDA, National Soil Survey Center, Lincoln

    Google Scholar 

  • Sharpley A (1985) The selective erosion of plant nutrients in runoff. Soil Sci Soc Am J 49:1527–1534

    Article  CAS  Google Scholar 

  • Shoji S, Nanzyo M, Dahlgren RA (1993) Volcanic ash soils: genesis, properties and utilization. Elsevier, Amsterdam

    Google Scholar 

  • Soil Survey Staff (2014) Keys to soil taxonomy, 12th edn. USDA-Natural Resources Conservation Service, Washington, DC

    Google Scholar 

  • Takahashi T, Dahlgren R (2016) Nature, properties and function of aluminum—humus complexes in volcanic soils. Geoderma 263:110–121

    Article  CAS  Google Scholar 

  • Tarabini M, Gómez F, Buduba C, Rostagno M, La Manna L (2014) Ceniza volcánica reciente: ¿un calibre en el suelo?. XXIV Congreso Argentino de la Ciencia del Suelo, Bahía Blanca

    Google Scholar 

  • Valenzuela MF, Irisarri J, Ferro L, Buduba CG (2002) Caracterización mineralógica de suelos desarrollados sobre cenizas volcánicas en el noroeste de la Provincia del Chubut. XVIII Congreso Argentino de la Ciencia del Suelo. Pto, Madryn

    Google Scholar 

  • Wada K (1985) The distinctive properties of Andosols. Adv Soil S 2:173–229

    Article  CAS  Google Scholar 

  • Wada K, Aomine S (1973) Soil development on volcanic materials during the Quaternary. Soil Sci 116:170–177

    Article  CAS  Google Scholar 

  • Warkentin BP, Maeda T (1980) Physical and mechanical characteristics of Andisols. In: Theng BK (ed) Soil with variable charge. New Zealand Society of Soil Science, pp 281–301

  • Zehetner F, Miller W (2006) Erodibility and runoff-infiltration characteristics of volcanic ash soils along an altitudinal climosequence in the Ecuadorian Andes. Catena 65:201–213

    Article  Google Scholar 

  • Zhao X, Huang J, Wu P, Gao X (2014) The dynamic effects of pastures and crop on runoff and sediments reduction at loess slopes under simulated rainfall conditions. Catena 119:1–7

    Article  Google Scholar 

  • Zhou GY, Morris JD, Yan JH, Yu ZY, Peng SL (2002) Hydrological impacts of reafforestation with eucalypts and indigenous species. For Ecol Manage 167:209–222

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge Agustín Gigli for his invaluable help with the fieldwork. We appreciate the valuable comments of two anonymous reviewers. This research was supported by PICT 1715 of the National Agency for Scientific and Technological Promotion (ANPCyT) and by PIP 11420100100290 of the National Research Council of Argentina (CONICET).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ludmila La Manna.

Additional information

Communicated by Dr. Agustín Merino.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

La Manna, L., Buduba, C.G. & Rostagno, C.M. Soil erodibility and quality of volcanic soils as affected by pine plantations in degraded rangelands of NW Patagonia. Eur J Forest Res 135, 643–655 (2016). https://doi.org/10.1007/s10342-016-0961-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10342-016-0961-z

Keywords

Navigation