Skip to main content

The decomposition rate of non-stem components of coarse woody debris (CWD) in European boreal forests mainly depends on site moisture and tree species

Abstract

The decomposition rate of CWD is a key missing link for a quantitative understanding of forest ecosystem functioning. We examined factors influencing decomposition rates of bark, roots and branches from aspen (Populus tremula), birch (Betula pendula, B. pubescens), fir (Abies sibirica), spruce (Picea abies, P. obovata), Scots pine (Pinus sylvestris) and Siberian pine (Pinus sibirica) CWD in three primeval European boreal forests. The chronosequence approach with estimates of single exponential decomposition rate (k) based on calculation of mass loss was used. The k of non-stem parts increased in the order: branches (0.006 year−1 for P. sibirica and 0.020 year−1 for other species), roots in poorly drained sites (0.025 year−1), roots in well-drained sites (0.034 year−1) and bark (0.110 and 0.138 year−1 and 0.147 and 0.255 year−1 under poorly and well-drained conditions and from 1 to 3 m and >3 m above the root collar, respectively). Our results predict that the rate of decomposition of whole CWD pieces in European boreal forests is a function of vegetation zone, site conditions, tree species and size.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Beets PN, Kimberley MO, Paul TSH, Garrett LG (2011) Planted forest carbon monitoring system—forest carbon model validation study for Pinus radiata. New Zeal J For Sci 41:177–189

    Google Scholar 

  2. Boddy L, Heilmann-Clausen J (2008) Basidiomycete community development in temperate angiosperm wood, Chapter 12. In: Boddy L, Frankland JS, West P (eds) Ecology of saprotrophic basidiomycetes. Academic press/Elsevier, London, pp 155–179

    Chapter  Google Scholar 

  3. Boddy L, Rayner ADM (1983) Ecological roles of basidiomycetes forming decay communities in attached oak branches. New Phytol 93:77–88

    Article  Google Scholar 

  4. Boddy L, Bardsley DW, Gibbon OM (1987) Fungal communities in attached ash branches. New Phytol 107:143–154

    Article  Google Scholar 

  5. Bond-Lamberty B, Gower ST (2008) Decomposition and fragmentation of coarse woody debris: re-visiting a boreal black spruce chronosequence. Ecosystems 11:831–840

    Article  Google Scholar 

  6. Bonh U, Gollub G, Hettwer C [Bearb.] (2000) Karte der natürlichen vegetation Europas/Map of the natural vegetation of Europe. Maßstab/Scale 1:2.500.000. Teil 2/Part 2: Legende/Legend, 153 S.; Teil 3/Part 3: Karten/Maps (9 Blätter/Sheets, Legendenblatt/LegendSheet, Übersichtskarte 1:10 Mio./General Map 1:10 million)—Münster (Landwirtschaftsverlag)

  7. Bonh U, Neuhäusl R, unter Mitarbeit von Gollub G, Hettwer C, Neuhäuslová Z, Shlüter H, Weber H (2000/2003) Karte der natürlichen Vegetation Europas/Map of the Natural Vegetation of Europe. Maßstab/Scale 1:2.500.000. Teil 1/Part 1: Erläuterungsband/Explanatory Text, 655 S.; Teil 2/Part 2: Legende/Legend, 153 S.; Teil 3/Part 3: Karten/Maps (9 Blätter/Sheets, Legendenblatt/Legend Sheet, Übersichtskarte 1:10 Mio./General Map 1:10 million)—Münster (Landwirtschaftsverlag)

  8. Bradford MA, Warren Ii RJ, Baldrian P, Crowther TW, Maynard DS, Oldfield EE, Wieder WR, Wood SA, King JR (2014) Climate fails to predict wood decomposition at regional scales. Nat Clim Change 4:625–630

    CAS  Article  Google Scholar 

  9. Chambers JQ, Schimel JP, Nobre AD (2001) Respiration from coarse wood litter in central Amazon forests. Biogeochemistry 52:115–131

    Article  Google Scholar 

  10. Chen H, Harmon M, Griffiths RP (2001) Decomposition and nitrogen release from decomposing woody roots in coniferous forests of the Pacific Northwest: a chronosequence approach. Can J For Res 31:246–260

    CAS  Article  Google Scholar 

  11. Cramer W, Bondeau A, Woodward FI, Prentice IC, Betts RA, Brovkin V et al (2001) Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic global vegetation models. Glob Change Biol 7:357–373

    Article  Google Scholar 

  12. Dittrich S, Jacob M, Bade C, Leuschner C, Hauck M (2014) The significance of deadwood for total bryophyte, lichen, and vascular plant diversity in an old-growth spruce forest. Plant Ecol 215(10):1123–1137

    Article  Google Scholar 

  13. Erickson HE, Edmonds RL, Peterson CE (1985) Decomposition of logging residues in Douglas-fir, western hemlock, Pacific silver fir, and ponderosa pine ecosystems. Can J For Res 15:914–921

    Article  Google Scholar 

  14. Fahey TJ, Hughes JW, Pu M, Arthur MA (1988) Root decomposition and nutrient flux following whole-tree harvest of northern hardwood forest. For Sci 34(3):744–768

    Google Scholar 

  15. Fedorchuk VN, Neshataev VYu, Kuznetsova ML (2005) Forest ecosystems of the north-western regions of Russia: typology, dynamics, management features. Forestry Scientific Research Institute, St. Petersburg, p 382 (in Russian)

    Google Scholar 

  16. Ganjegunte GK, Condron LM, Clinton PW, Davis MR, Mahieu N (2004) Decomposition and nutrient release from radiata pine (Pinus radiata) coarse woody debris. For Ecol Manag 187:197–211

    Article  Google Scholar 

  17. Garrett LG, Kimberley MO, Oliver GR, Pearce SH, Beets PN (2012) Decomposition of coarse woody roots and branches in managed Pinus radiata plantations in New Zealand—a time series approach. For Ecol Manag 269:116–123

    Article  Google Scholar 

  18. Harmon ME, Franklin JF, Swanson FJ, Sollins P, Gregory SV, Lattin JD, Anderson NH, Cline SP, Aumen NG, Sedell JR, Liencamper GW, Cromack K.Jr, Cummins KW (1986) Ecology of coarse woody debris in temperate ecosystems. Adv Ecol Res 15:133–202

    Article  Google Scholar 

  19. Harmon ME, Whigham DF, Sexton J, Olmsted I (1995) Decomposition and mass of woody detritus in the dry tropical forests of the northeastern Yucatan Peninsula, Mexico. Biotropica 27(3):305–316

    Article  Google Scholar 

  20. Harmon ME, Krankina ON, Sexton J (2000) Decomposition vectors: a new approach to estimating woody detritus decomposition dynamics. Can J For Res 30:76–84

    Article  Google Scholar 

  21. Helfenstein J, Kienast F (2014) Ecosystem service state and trends at the regional to national level: a rapid assessment. Ecol Ind 36:11–18

    Article  Google Scholar 

  22. Hyvönen R, Olsson BA, Lundkvist H, Staaf H (2000) Decomposition and nutrient release from Picea abies (L.) Karst. and Pinus sylvestris L. logging residues. For Ecol Manag 126:97–112

    Article  Google Scholar 

  23. Janisch JE, Harmon ME, Chen H, Fasth B, Sexton J (2005) Decomposition of coarse woody debris originating by clearcutting of an old-growth conifer forest. EcoScience 12(2):151–160

    Article  Google Scholar 

  24. Jo I, Fridley JD, Frank DA (2016) More of the same? In situ leaf and root decomposition rates do not vary between 80 native and nonnative deciduous forest species. New Phytol 209(1):115–122

    CAS  Article  PubMed  Google Scholar 

  25. Johnson EA, Miyanishi K (2008) Testing the assumptions of chronosequences in successions. Ecol Lett 11:419–431

    Article  PubMed  Google Scholar 

  26. Krankina ON, Harmon ME (1995) Dynamics of the dead wood carbon pool in northern-western Russian boreal forests. Water Air Soli Pollut 82:227–238

    CAS  Article  Google Scholar 

  27. Kudeyarov VN, Zavarzin GA, Blagodatskaya SA (2007) Carbon pools and fluxes in Russia’s terrestrial ecosystems. Science Publ., Moscow (in Russian)

    Google Scholar 

  28. Laiho R, Prescott CE (2004) Decay and nutrient dynamics of coarse woody debris in northern coniferous forests: a synthesis. Can J For Res 34:763–777

    CAS  Article  Google Scholar 

  29. Liu W, Schaefer D, Qiao L, Liu X (2013) What controls the variability of wood-decay rates? For Ecol Manag 310:623–631

    Article  Google Scholar 

  30. Mackensen J, Bauhus J (1999) The decay of coarse woody debris (National Carbon Accounting System technical report no. 6) Commonwealth of Australia

  31. Mäkinen H, Hynynen J, Siitonen J, Sievänen R (2006) Predicting the decomposition of Scots pine, Norway spruce and birch stems in Finland. Ecol Appl 16:1865–1879

    Article  PubMed  Google Scholar 

  32. Melin Y, Petersson H, Nordfjell T (2009) Decomposition of stump and root systems of Norway spruce in Sweden: a modeling approach. For Ecol Manag 257:1445–1451

    Article  Google Scholar 

  33. Miller WE (1983) Decomposition rates of aspen bole and branch litter. For Sci 29:351–356

    Google Scholar 

  34. Moroni MT, Morris DM, Shaw C, Stokland JN, Harmon ME, Fenton NJ, Merganičová K, Merganič J, Okabe K, Hagemann U (2015) Buried wood: a common yet poorly documented form of deadwood. Ecosystems 18(4):605–628

    CAS  Article  Google Scholar 

  35. Mukhin VA (1993) Biota of xylotrophic basidiomycetes of the West-Siberian Plain. Nauka Publ., Moscow (in Russian)

    Google Scholar 

  36. Olajuyigbe SO, Tobin B, Gardiner P, Nieuwenhuis M (2011) Stocks and decay dynamics of above- and belowground coarse woody debris in managed Sitka spruce forests in Ireland. For Ecol Manag 262:1109–1118

    Article  Google Scholar 

  37. Olson JS (1963) Energy storage and the balance of producers and decomposers in ecological systems. Ecology 44:322–330

    Article  Google Scholar 

  38. Palviainen M, Finér L (2015) Decomposition and nutrient release from Norway spruce coarse roots and stumps—a 40-year chronosequence study. For Ecol Manag 358:1–11

    Article  Google Scholar 

  39. Palviainen M, Finér L, Laiho R, Shorohova E, Kapitsa E, Vanha-Majamaa I (2011) Phosphorus and base cation accumulation and release patterns in decomposing Scots pine, Norway spruce and silver birch stumps. For Ecol Manag 260:1478–1489

    Article  Google Scholar 

  40. Parameswaran N, Wilhelm GE, Liese W (1976) Ultrastructural aspects of beech bark degradation by fungi. Eur J For Pathol 6:274–286

    Article  Google Scholar 

  41. Polubojarinov OI (1976) Density of wood, vol 159. Nauka Publ., Moskow (in Russian)

    Google Scholar 

  42. R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/

  43. Rayner ADM, Boddy L (1988) Fungal decomposition of wood: its biology and ecology. Wiley, Chichester

    Google Scholar 

  44. Russell MB, Fraver S, Aakala T, Gove JH, Woodall CW, D’Amato AW, Ducey MJ (2015) Quantifying carbon stores and decomposition in dead wood: a review. For Ecol Manag 350:107–128

    Article  Google Scholar 

  45. Rypaček V (1957) Biologie dřeva dřevokaznŷch hub. Praha (in Czech)

  46. Shaw RG, Mitchell-Olds T (1993) Anova for unbalanced data: an overview. Ecology 74:1638–1645

    Article  Google Scholar 

  47. Shorohova E, Kapitsa E (2014a) Mineralization and fragmentation rates of bark attached to logs in a northern boreal forest. For Ecol Manag 315:185–190

    Article  Google Scholar 

  48. Shorohova E, Kapitsa E (2014b) Influence of the substrate and ecosystem attributes on the decomposition rates of coarse woody debris in European boreal forests. For Ecol Manag 356:273–284

    Article  Google Scholar 

  49. Shorohova E, Kapitsa E (2015) Stand and landscape scale variability in the amount and diversity of coarse woody debris in primeval European boreal forests. For Ecol Manag 315:185–190

    Article  Google Scholar 

  50. Shorohova E, Ignatyeva O, Kapitsa E, Kauhanen H, Kuznetsov A, Vanha-Majamaa I (2012) Stump decomposition rates after clear-felling with and without prescribed burning in southern and northern boreal forests in Finland. For Ecol Manag 263:74–84

    Article  Google Scholar 

  51. Stokland JN, Siitonen J, Jonsson BG (2012) Biodiversity in dead wood. Cambrigde Univ. Press, Cambrigde

    Book  Google Scholar 

  52. Swift MJ, Healey IN, Hibberd JK, Sykes JM, Bampoe V, Nesbitt ME (1976) The decomposition of branch-wood in the canopy and floor of a mixed deciduous woodland. Oecologia 26(2):139–149

    Article  Google Scholar 

  53. Tarasov ME, Birdsey RA (2001) Decay rate and potential storage of course woody debris in the Leningrad region. Ecol Bull 49:137–149

    Google Scholar 

  54. Tetioukhin SV, Minayev VN, Bogomolova LP (2004) Forest Mensuration and inventory: reference book for the North-Western Russia. StP. FTA Publ, St. Petersburg (in Russian)

    Google Scholar 

  55. Tobin B, Black K, Mcgurdy M, Nieuwenhuis M (2007) Estimates of decay rates of components of coarse woody debris in thinned Sitka spruce forests. Forestry 80(4):455–469

    Article  Google Scholar 

  56. Weedon JT, Cornwell WK, Cornelissen JHC, Zanne AE, Wirth C, Coomes DA (2009) Global meta-analysis of wood decomposition rates: a role for trait variation among tree species? Ecol Lett 12:45–56

    Article  PubMed  Google Scholar 

  57. Yatskov M, Harmon M, Krankina O (2003) A chronosequence of wood decomposition in the boreal forests of Russia. Can J For Res 33:1211–1226

    Article  Google Scholar 

  58. Yin X (1999) The decay of forest woody debris: numerical modeling and implications based on some 300 data cases from North America. Oecologia 121:81–98

    Article  Google Scholar 

  59. Zamolodchicov DG, Utlin AI, Korovin GN (1998) Determination of carbon stores by conversion-volumetric coefficients related to age of stands. Lesovedenie 3:84–93 (in Russian)

    Google Scholar 

  60. Zamolodchicov DG, Grabovsky VI, Kraev VN (2011) Dynamics of carbon budget of Russia’s forests during the last two decades. Lesovedenie 6:16–28 (in Russian)

    Google Scholar 

Download references

Acknowledgments

The research was supported by the Russian Science Foundation (15-14-10023). The data were collected with financial support from the Russian Foundation of Basic Research (09-04-00209-a). The staff of Nature Park “Vepssky Forest,” Central Forest Biosphere State Natural Reserve and Yugyd-va National Park helped with practicalities during expeditions. We sincerely thank all people who helped us in the fieldwork. Olga Lisitsyna created the map of the study sites. Carla Burton revised the language.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ekaterina Shorohova.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shorohova, E., Kapitsa, E. The decomposition rate of non-stem components of coarse woody debris (CWD) in European boreal forests mainly depends on site moisture and tree species. Eur J Forest Res 135, 593–606 (2016). https://doi.org/10.1007/s10342-016-0957-8

Download citation

Keywords

  • Decay
  • Roots
  • Branches
  • Bark
  • Dead wood
  • Fragmentation
  • Biodiversity
  • Carbon