European Journal of Forest Research

, Volume 135, Issue 3, pp 417–431 | Cite as

Forest observational studies: an alternative to designed experiments

  • K. von GadowEmail author
  • Xiu Hai Zhao
  • V. P. Tewari
  • Chun Yu Zhang
  • Ashwani Kumar
  • Jose Javier Corral Rivas
  • Rajesh Kumar
Assmann Review


With Ernst Assmann’s appointment to the chair of Forest Yield Science in Munich in 1951, he assumed responsibility for the maintenance of the extensive network of growth-and-yield plots of the Bavarian Forest Research Institute. This network, with some plots having been remeasured since 1870, proved to be a rich source of observations, and constituted the empirical basis for Assmann’s fundamental theories in production ecology. Realizing the strategic value of long-term field observations, scientists are using (a) designed experiments and (b) observational studies to study forest structure and dynamics. This contribution is an attempt to clarify fundamental differences, and to present examples, of these two approaches. We present recent developments regarding the installation of Designed Experiments and show that rigorous experimental design, usually found in planted forests and based on very specific manipulations, that are normally not found in the natural environment is required to address a particular hypothesis that cannot be tested by merely using available observations. We also present examples of new Forest Observational Networks established in China, India, Africa and America. These alternative research infrastructures are especially suitable for the study of natural forests that exhibit a high diversity of tree species with varying size and age structures. Our conclusion is that Forest Observational Studies are emerging as an important alternative to Designed Experiments because they provide a vast amount of information about complex natural forest communities rather quickly. However, long-term commitment is essential to ensure a steady flow of observations about forest dynamics. Manipulated experiments and observational studies can be complementary, but the optimum use of both installations requires careful planning and coordination.


Experimental design Smithsonian Tropical Research Institute Longitudinal Cross-sectional Interval study 


Compliance with ethical standards

Conflict of interest

There is no conflict of interest.


  1. Aguirre O, Hui GY, Gadow KV, Jimenez J (2003) Comparative analysis of natural forest sites in Durango, Mexico. For Ecol Manag 183:137–145CrossRefGoogle Scholar
  2. Albert M, Hansen J, Nagel J, Schmidt M, Spellmann H (2015) Assessing risks and uncertainties in forest dynamics under different management scenarios and climate change. Forest Ecosyst 2(1):1–21Google Scholar
  3. Amateis RL, Burkhart HE (2005) The influence of thinning on the proportion of peeler, sawtimber, and pulpwood trees in loblolly pine plantations. South J Appl For 29:158–162Google Scholar
  4. Assmann E (1961) Waldertragskunde. Organische Produktion, Struktur, Zuwachs und Ertrag von Waldbeständen. BLV Verlagsgesellschaft, MünchenGoogle Scholar
  5. Ausburg T (2006) Becoming interdisciplinary—an introduction to interdisciplinary studies, 2nd edn. Kendall/Hunt Publishing, New YorkGoogle Scholar
  6. Baeten L, Verheyen K, Wirth C, Bruelheide H, Bussotti F, Finér L, Jaroszewicz B, Selvi F, Valladares F, Allan E, Ampoorter E, Auge H, Avacariei D, Barbaro L, Barnoaiea I, Bastias CC, Bauhus J, Beinhoff C, Benavides R, Benneter A, Berger S, Berthold F, Boberg J, Bonal D, Brüggemann W, Carnol M, Castagneyrol B, Charbonnier Y, Chécko E, Coomes D, Coppi A, Dalmaris E, Dӑnila G, Dawud SM, Vries Wd, Wandeler HD, Deconchat M, Domisch T, Duduman G, Fischer M, Fotelli M, Gessler A, Gimeno TE, Granier A, Grossiord C, Guyot V, Hantsch L, Hättenschwiler S, Hector A, Hermy M, Holland V, Jactel H, Joly FX, Juckers T, Kolb S, Koricheva J, Lexer MJ, Liebergesell M, Milligan H, Müller S, Muys B, Nguyen D, Nichiforel L, Pollastrini M, Proulx R, Rabasa S, Radoglou K, Ratcliffe S, Raulund-Rasmussen K, Seiferling I, Stenlid J, Vesterdal L, von Wilpert K, Zavala MA, Zielinski D, Scherer-Lorenzen M (2013) A novel comparative research platform designed to determine the functional significance of tree species diversity in European forests. Perspect Plant Ecol Evol Syst 15:281–291CrossRefGoogle Scholar
  7. Bauhus J, Pokorny B, Van der Meer P, Kanowski PJ, Kanninen M (2010) Ecosystem goods and services—the key for sustainable plantations. In: Bauhus J, Van der Meer P, Kanninen M (eds) Ecosystem goods and services from Plantation forests. Earthscan, London, pp 205–227Google Scholar
  8. Borcard D, Legendre P (2002) All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices. Ecol Model 153:51e68CrossRefGoogle Scholar
  9. Bruelheide H, Nadrowski K, Assmann T, Bauhus J, Both S, Buscot F, Chen XY, Ding B, Durka W, Erfmeier A, Gutknecht JLM, Guo D, Guo LD, Härdtle W, He JS, Klein AM, Kühn P, Liang Y, Liu X, Michalski S, Niklaus PA, Pei K, Scherer-Lorenzen M, Scholten T, Schuldt A, Seidler G, Trogisch S, von Oheimb G, Welk E, Wirth C, Wubet T, Yang X, Yu M, Zhang S, Zhou H, Fischer M, Ma K, Schmid B (2014) Designing forest biodiversity experiments: general considerations illustrated by a new large experiment in subtropical China. Methods Ecol Evol 5:74–89CrossRefGoogle Scholar
  10. Bungart R, Hüttl RF (2004) Growth dynamics and biomass accumulation of 8-year-old hybrid poplar clones in a short-rotation plantation on a clayey-sandy mining substrate with respect to plant nutrition and water budget. Eur J For Res 123(2):105–115Google Scholar
  11. Champion HG, Seth SK (1968) A revised survey of the forest types of India. Government of India Press, Delhi Google Scholar
  12. Chen L, Wang L, Yeerjiang B, Zhang C, Zhao X, Gadow KV (2013) Seed dispersal and seedling recruitment of trees at different successional stages in a temperate forest in northeastern China. J Plant Ecol. doi: 10.1093/jpe/rtt024 Google Scholar
  13. Chisholm RA, Muller-Landau HC, Rahman KA, Bebber DP, Bin Y, Bohlman SA et al (2013) Scale-dependent relationships between tree species richness and ecosystem function in forests. J Ecol 101:1214–1224CrossRefGoogle Scholar
  14. Condit R (1998) Tropical forest census plots: methods and results from Barro Colorado Island, Panama and a comparison with other plots. Springer, BerlinCrossRefGoogle Scholar
  15. Condit R, Engelbrecht BM, Pino D, Pérez R, Turner BL (2013) Species distributions in response to individual soil nutrients and seasonal drought across a community of tropical trees. Proc Natl Acad Sci USA 110:5064–5068CrossRefPubMedPubMedCentralGoogle Scholar
  16. Corral-Rivas JJ, Wehenkel C, Castellanos BH, Vargas LB, Diéguez-Aranda U (2010) A permutation test of spatial randomness: application to nearest neighbour indices in forest stands. J For Res 15:218–225CrossRefGoogle Scholar
  17. Corral-Rivas JJ, Reyes RI, Wehenkel C, Aguirre-Calderón OA, Gadow KV (2012) A network of forest observational studies in Durango (Mexico). In: Zhao XH, Zhang CY, Gadow KV (eds) Forest observational studies. Proceedings of an international workshop at Beijing Forestry University, which convened on 20/21 September 2012, pp 125–138Google Scholar
  18. Corral-Rivas JJ, Hilda Lorena Ávila Márquez, Raul Solis Moreno, Benedicto Vargas Larreta, Gadow KV (2014) Esquema de Monitoreo de la Deforestación y la biodiversidad de los bosques Mixtos e Irregulares del Estado de Durango. In: Vargas Larreta B (ed) Presente y Futuro de los Bosques. Sierke Verlag, pp 73–88Google Scholar
  19. Corral-Rivas S, Álvarez-González JG, Corral-Rivas JJ, López-Sánchez CA (2015) Characterization of diameter structures of natural forests of northwest of Durango, Mexico. Revista Chapingo Serie Ciencias Forestales y del Ambiente 21(2):221–236CrossRefGoogle Scholar
  20. Crawley MJ (2005) Statistics—an introduction using R. Wiley, New York, p 327CrossRefGoogle Scholar
  21. Crecente-Campo F, Corral-Rivas JJ, Vargas-Larreta B, Wehenkel C (2014) Can random components explain differences in the height-diameter relationship in mixed uneven-aged stands? Ann For Sci 71:51–70CrossRefGoogle Scholar
  22. Dohrenbusch A, Bredemeier M, Lamersdorf N (2003) Manipulation of nutrient and water input of a Norway Spruce Ecosystem. Springer, BerlinGoogle Scholar
  23. Forest Survey of India (2013) India state of forest report 2013. Ministry of Environment and Forests, DehradunGoogle Scholar
  24. Forrester DI, Pretzsch H (2015) Tamm review—on the strength of evidence when comparing ecosystem functions of mixtures with monocultures. For Ecol Manag. doi: 10.1016/j.foreco.2015.08.016 Google Scholar
  25. Franz F (1990) Ernst Assmann’s Wirken in München—ein Rückblick zu seinem zehnten Todestag. In: Franz F, Utschig H, pp 1–16Google Scholar
  26. Gadow KV (1993) Zur Bestandesbeschreibung in der Forsteinrichtung. Forst und Holz 48(21):602–606Google Scholar
  27. Gadow KV (1999) Waldstruktur und Diversität (Engl: Forest structure and diversity). Allgemeine Forst und Jagdzeitung 170(7):117–122Google Scholar
  28. Gadow KV (2013) Messung und Modellforschung—Grundlagen der Forsteinrichtung. Allgemeine Forst und Jagdzeitung 184(7/8):143–158Google Scholar
  29. Gadow KV, Bredenkamp BV (1992) Forest management. Academica Press, PretoriaGoogle Scholar
  30. Gadow KV, Kleinn C (2005) Forest management, science-based and understandable. In: Peterson CE, Maguire DA (eds) Balancing ecosystem values—innovative experiments for sustainable forestry. US Department of Agriculture, Forest Service, General Technical Report PNW-GTR-635, pp 15–23Google Scholar
  31. Gadow KV, Kotzé H (2014) Tree survival and maximum density of planted forests—observations from South African spacing studies. For Ecosyst 1:21. doi: 10.1186/s40663-014-0021-4 Google Scholar
  32. Gadow KV, Tremer N, Mylius A (2005) Datengewinnung für die Forsteinrichtungsforschung. Forst und Holz 61(2):60–65Google Scholar
  33. Gadow KV, Fehrmann L, Murach D, Walotek P (2006) Managing forest ecosystems—the challenge of climate change, concept—tools—data. In: Manuscript for the international conference “managing forest ecosystems—the challenge of climate change”. University of Valladolid, Palencia/Spain, 3–7 April 2006Google Scholar
  34. Gadow KV, Zhang C, Wehenkel C, Pommerening A, Corral-Rivas JJ, Korol M, Myklush S, Hui G, Kiviste A, Zhao X (2012) Forest structure and diversity. In: Pukkala T, Gadow KV (eds) Continuous cover forestry, continuous cover forestry, managing forest ecosystems, vol 23. Springer, BerlinGoogle Scholar
  35. González EMS, González EM, Márquez LMA (2007) Vegetación y Ecorregiones de Durango. CIIDIR-IPN. Plaza y Valdés, S.A. de C.V., México, D.F.Google Scholar
  36. Griffith DA, Peres-Neto PR (2006) Spatial modelling in ecology: the flexibility of eigenfunction spatial analyses. Ecology 87(10):2603–2613CrossRefPubMedGoogle Scholar
  37. Heaton RJ (2000) The silvicuture, nutrition and economics of short rotation coppice in the uplands of mid-Wales. Ph.D. thesis, Cardiff UniversityGoogle Scholar
  38. Hector A, Philipson C, Saner P, Chamagne J, Dzulkifli D, O’Brien M et al (2011) The Sabah Biodiversity Experiment: a long-term test of the role of tree diversity in restoring tropical forest structure and functioning. Philos Trans R Soc B 366:3303–3315CrossRefGoogle Scholar
  39. Hofmann M (2005) Pappeln als nachwachsender Rohstoff auf Ackerstandorten—Kulturverfahren, Ökologie und Wachstum unter dem Aspekt der Sortenwahl. Doctoral Dissertation, University of GöttingenGoogle Scholar
  40. Hui GY, Albert M, Gadow KV (1998) Das Umgebungsmaß als Parameter zur Nachbildung von Bestandesstrukturen. Forstwiss Centralbl 117:258–266CrossRefGoogle Scholar
  41. Hui GY, Zhao XH, Zhao ZH, Gadow KV (2011) Evaluating tree species spatial diversity based on neighborhood relationships. Forest Sci 57(4):292–300Google Scholar
  42. Huston MA (1997) Hidden treatments in ecological experiments: re-evaluating the ecosystem function of biodiversity. Oecologia 110:449–460CrossRefGoogle Scholar
  43. Kafatos FC, Eisner T (2004) Unification in the century of biology. Science 303:1257CrossRefPubMedGoogle Scholar
  44. Kaul ON, Gupta AC, Sharma DC (1975) Preservation plots in India. Indian Forest Bulletin No. 271. FRI, DehradunGoogle Scholar
  45. Kenfack D, Chuyong GB, Condit R, Russo SE, Thomas DW (2014) Demographic variation and habitat specialization of tree species in a diverse tropical forest of Cameroon. For Ecosyst 1:22CrossRefGoogle Scholar
  46. Klädtke J, Kohnle U, Kublin E, Ehring A, Pretzsch H, Uhl E, Spellmann H, Weller A (2012) Wachstum und Wertleistung der Douglasie in Abhängigkeit von der Standraumgestaltung. Schweiz Z Forstwes 163(3):96–104CrossRefGoogle Scholar
  47. Kleinn C, Köhl M (1999) Long term observations and research in forestry. In: Proceedings volume, international IUFRO symposium held in Costa Rica, February 23–27, 1999Google Scholar
  48. Kramer H (1988) Waldwachstumslehre. Verlag Paul Parey, Hamburg and BerlinGoogle Scholar
  49. Kreutzer K (1993) Changes in the role of nitrogen in Central European forests. In: Huettl RF, Mueller-Dombois D (eds) Forest decline in the Atlantic and Pacific region. Springer, Berlin, pp 82–96CrossRefGoogle Scholar
  50. Kreutzer K, Weis T (1998) The Höglwald field experiments—aims, concept and basic data. Plant Soil 199(1):1–10CrossRefGoogle Scholar
  51. Lal JB (1989) India’s forests: myth and reality. Natraj Publishers, New DelhiGoogle Scholar
  52. Lange M, Türke M, Pašalić E, Boch S, Hessenmöller D, Müller J, Prati D, Socher SA, Fischer M, Weisser WW, Gossner MM (2014) Effects of forest management on ground-dwelling beetles (Coleoptera; Carabidae, Staphylinidae) in Central Europe are mainly mediated by changes in forest structure. For Ecol Manag 329:166–176CrossRefGoogle Scholar
  53. Laughton FS (1937) The Silviculture of the Indigenous Forests of the Union of South Africa with special reference to the forests of the Knysna region. Scientific Bulletin 157, Forestry Series 7. Government Printer, PretoriaGoogle Scholar
  54. Leinfelder R, Schwägerl CH, Möllers NU, Trischler H (2012) Die menschengemachte Erde–Das Anthropozän sprengt die Grenzen von Natur, Kultur und Technik. Kultur & Technik 2/2012 (Themenheft Mensch und Natur), S. 12–17, München (Verlag Deutsches Museum)Google Scholar
  55. Lessard VC (2001) Updating Indiana annual forest inventory and analysis plot data using eastern broadleaf forest diameter growth models. In: Reams GA, McRoberts RE, Van Deusen PC (eds) Proceedings of the second annual forest inventory and analysis symposium, 2000 October 17–18, Salt Lake City, UT. General Technical Report SRS-47. US Department of Agriculture, Forest Service, Southern Research Station, Asheville, NC, pp 66–69Google Scholar
  56. Liesebach M, von Wuehlisch G, Muhs HJ (1999) Aspen for short-rotation coppice plantations on agricultural sites in Germany: effects of spacing and rotation time on growth and biomass production of aspen progenies. For Eco Manag 121:25–39CrossRefGoogle Scholar
  57. López-Serrano PM, López-Sánchez CA, Díaz-Varela RA, Corral-Rivas JJ, Solís-Moreno R, Vargas-Larreta B, Álvarez-González JG (2015) Estimating biomass of mixed and uneven-aged forests using spectral data and a hybrid model combining regression trees and linear models. iForest (early view). doi: 10.3832/ifor1504-008 [online 2015-09-21]
  58. Lujan-Soto JE, Corral-Rivas JJ, Aguirre-Calderon OA, Gadow KV (2015) Grouping forest tree species on the Sierra Madre Occidental, Mexico. Allgemeine Forst und Jagdzeitung 186(3–4):63–71Google Scholar
  59. Map (2015) Retrieved on 24 May 2015
  60. Mårell A, Leitgeb E (2004) European long-term research for sustainable forestry. Appendix MC4-8a
  61. Menezes LM, Bunn DW, Taylor JW (2000) Review of guidelines for the use of combined forecasts. Eur J Oper Res 120:190–204CrossRefGoogle Scholar
  62. Monserud RA (2002) Large-scale management experiments in the moist maritime forests of the Pacific Northwest. Landsc Urban Plann 59(3):159–180CrossRefGoogle Scholar
  63. Nagel J, Spellmann H, Pretzsch H (2012) Zum Informationspotenzial langfristiger forstlicher Versuchsflächen und periodischer Waldinventuren für die waldwachstumskundliche Forschung. Allgemeine Forst und Jagdzeitung 183(5/6):111–116Google Scholar
  64. Nebel G, Kvist LP, Vanclay JK, Christensen H, Freitas LL, Ruiz J (2001) Structure and floristic composition of flood plain forests in the Peruvian Amazon. For Ecol Manag 150(2001):27–57CrossRefGoogle Scholar
  65. Ni R, Baiketuerhan Y, Zhang C, Zhao XH, Gadow KV (2014) Analysing structural diversity in two temperate forests in northeastern China. For Ecol Manag 316:139–148CrossRefGoogle Scholar
  66. Nothdurft A, Schmidt M (2010) Kalibrierfähige Modelle für simultane Prognosen von Durchmesser und Höhe bei Waldinventuren—integrierte Nutzung von Langzeitbeobachtungen auf Versuchsflächen. DVFFA—Sektion Ertragskunde Jahrestagung 2010:125–130Google Scholar
  67. O’Hehir J (2001) Growth and yield models for South Australian Radiata pine plantations incorporating fertilising and thinning. Ph.D. dissertation, Institute of Land and Food Resources, University of MelbourneGoogle Scholar
  68. Pelz DR, Kohnle U (2013) Forest observational studies in Germany. In: Zhao XH, Zhang CY, Gadow KV (eds) Forest observational studies. Proceedings of an international workshop at Beijing Forestry University, 20/21 September 2012, pp 109–124Google Scholar
  69. Peterson CE, Monserud RA (2002) Compatibility between wood production and other values and uses on forested lands—a problem analysis. General Technical Report PNW-GTR-564. US Department of Agriculture, Forest Service, Pacific Northwest Research Station, Portland, ORGoogle Scholar
  70. Phillips JFV (1931) Forest succession and ecology in the Knysna region. In: Schulze E-D, Caldwell MM (eds) Memoirs of the botanical survey of South Africa, vol 14. The Government Printer, PretoriaGoogle Scholar
  71. Pommerening A (2006) Evaluating structural indices by reversing forest structural analysis. For Ecol Manag 224:266–277CrossRefGoogle Scholar
  72. Pommerening A, Stoyan D (2008) Reconstructing spatial tree point patterns from nearest neighbour summary statistics measured in small subwindows. Can J For Res 38:1110–1122CrossRefGoogle Scholar
  73. Pretzsch H (2009) Forest dynamics, growth and yield. Springer, BerlinCrossRefGoogle Scholar
  74. Pretzsch H, Biber P, Gadow KV (2015) Ernst Assmann: a German pioneer in forest production ecology and quantitative silviculture. Eur J For Res. doi: 10.1007/s10342-015-0872-4 (Published online 24 March 2015) Google Scholar
  75. Scherer-Lorenzen M, Körner C, Schulze E-D (eds) (2005) Forest diversity and function: temperate and boreal systems. Springer, BerlinGoogle Scholar
  76. Scherer-Lorenzen M, Schulze ED, Don A, Schumacher J, Weller E (2007) Exploring the functional significance of forest diversity: a new long-term experiment with temperate tree species (BIOTREE). Perspect Plant Ecol Evol Syst 9:53–70CrossRefGoogle Scholar
  77. Seifert T, Seifert S, Seydack A, Durrheim G, Gadow KV (2014) Competition effects in an Afrotemperate forest. For Ecosyst 1:13CrossRefGoogle Scholar
  78. Seydack AHW, Durrheim G, Louw JH (2012) Forest structure in selected South African forests: edaphoclimatic environment, phase and disturbance. Eur J For Res 131:261–281CrossRefGoogle Scholar
  79. Spellmann H, Wagner S, Nagel J, Guericke M, Griese F (1996) In der Tradition stehend, neue Wege beschreitend. Forst und Holz 51(11):363–368Google Scholar
  80. Szaro RC, Peterson CE, Gadow KV (2006) Operational experiments for sustainably managing forests. Allgemeine Forst und Jagdzeitung 177(6/7):98–104Google Scholar
  81. Tewari VP, Gadow KV (2008) Modelling potential density limiting survival, stand density and basal area growth for pure even-aged Dalbergia sissoo stands in a hot arid region of India. Forests Trees Livelihoods 18:133–150CrossRefGoogle Scholar
  82. Tewari VP, Sukumar R, Kumar R, Gadow KV (2014) Forest observational studies in India—past developments and future prospects. For Ecol Manag 316:32–46CrossRefGoogle Scholar
  83. Tilman D, Lehman CL, Thomson KT (1997) Plant diversity and ecosystem productivity: theoretical considerations. Proc Natl Acad Sci USA 94:1857–1861CrossRefPubMedPubMedCentralGoogle Scholar
  84. Verheyen K, Ceunen K, Ampoorter E, Baeten L, Bosman B, Branquart E, Carnol M, De Wandeler H, Grégoire JC, Lhoir P, Muys B, Setiawan NN, Vanhelle-Mont M, Ponette Q (2013) Assessment of the functional role of tree diversity, the example of the multi-site FORBIO-experiment. Plant Ecol Evol 146:1–10CrossRefGoogle Scholar
  85. Verheyen K, Vanhellemont M, Auge H, Baeten L, Baraloto C, Barsoum N, Bilodeau-Gauthier S, Bruelheide H, Castagneyrol H, Godbold D, Haase J, Hector A, Jactel H, Koricheva J, Loreau M, Mereu S, Messier C, Muys B, Nolet P, Paquette A, Parker J, Perring M, Ponette Q, Potvin C, Reich P, Smith A, Weih M, Scherer-Lorenzen M (2015) Contributions of a global network of tree diversity experiments to sustainable forest plantations. Ambio [Epub ahead of print]Google Scholar
  86. von Breitenbach F (1974) Southern cape forests and trees. The Government Printer, PretoriaGoogle Scholar
  87. Wang J, Wu L, Zhao X, Fan J, Zhang C, Gadow KV (2013) Influence of ground flora on Fraxinus mandshurica seedling growth on abandoned land and beneath forest canopy. Eur J For Res 132(2):313–324CrossRefGoogle Scholar
  88. Wang J, Zhang C, Zhao X, Gadow KV (2014) Reproductive allocation of two dioecious Rhamnus species in temperate forests of Northeast China. iForest 7:25–32.
  89. Wehenkel C, Corral-Rivas JJ, Hernández-Díaz JC, Gadow KV (2011) Estimating balanced structure areas in multi-species forests on the Sierra Madre Occidental, Mexico. Ann For Sci 68:385–394CrossRefGoogle Scholar
  90. Wehenkel C, Corral-Rivas JJ, Gadow KV (2014) Quantifying differences between ecosystems with particular reference to selection forests in Durango/Mexico. For Ecol Manag 316:117–124CrossRefGoogle Scholar
  91. White F (1978) The afromontane region. In: Werger MJA (ed) Biogeography and ecology of Southern Africa. Dr. W. Junk, The Hague, pp 464–513Google Scholar
  92. Yan Y, Zhang C, Wang Y, Zhao X, Gadow KV (2015) Drivers of seedling survival in a temperate forest and their relative importance at three stages of succession. Ecol Evol. doi: 10.1002/ece3.1688 Google Scholar
  93. Yue C, Kohnle U, Hanewinkel M, Klädtke J (2011) Extracting environmentally driven growth trends from diameter increment series based on a multiplicative decomposition model. Can J For Res 41(8):1577–1589CrossRefGoogle Scholar
  94. Zhang CY, Zhao XH, Gadow KV (2009) Gender, neighboring competition and habitat effects on the stem growth of dioecious Fraxinus mandshurica trees in a northern temperate forest. Ann For Sci 66:812–821CrossRefGoogle Scholar
  95. Zhang CY, Zhao XH, Gadow KV (2010) Partitioning temperate plant community structure at different scales. Acta Oecol 36(2010):306–313CrossRefGoogle Scholar
  96. Zhang C, Zhao Y, Zhao X, Gadow KV (2012) Species-habitat associations in a northern temperate forest in China. Silva Fenn 46(4):501–519Google Scholar
  97. Zhang C, Zhao X, Gadow KV (2014) Analysing selective harvest events in three large forest observational studies in North Eastern China. For Ecol Manag 316:100–109CrossRefGoogle Scholar
  98. Zhang CY, Zhao XH, Gadow KV (2015) Maximum density patterns in two natural forests: an analysis based on large observational field studies in China. For Ecol Manag 346:98–105CrossRefGoogle Scholar
  99. Zhao XH, Corral-Rivas JJ, Zhang CY, Temesgen H, Gadow KV (2014) Forest observational studies—an essential infrastructure for sustainable use of natural resources. For Ecosyst 2014:1–8Google Scholar
  100. Zhao XH, Zhang CY, Gadow KV (2012) Forest observational networks. In: Proceedings of the IUFRO-EFI-ICFFI conference, Ecosystem Design for Multiple Services-with an emphasis on Eurasian Boreal Forests, St. Petersburg Forest Technical University, St. Petersburg/Russia (9–11 November, 2011), pp 34–47Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • K. von Gadow
    • 1
    • 2
    Email author
  • Xiu Hai Zhao
    • 4
  • V. P. Tewari
    • 3
  • Chun Yu Zhang
    • 4
  • Ashwani Kumar
    • 5
  • Jose Javier Corral Rivas
    • 6
  • Rajesh Kumar
    • 7
  1. 1.Burkhardt InstituteGoettingen UniversityGöttingenGermany
  2. 2.Department of Forestry and Wood ScienceUniversity of StellenboschStellenboschSouth Africa
  3. 3.Himalayan Forest Research InstituteShimlaIndia
  4. 4.Beijing Forestry UniversityBeijingChina
  5. 5.Indian Council of Forestry Research and EducationDehradunIndia
  6. 6.Institute for Silviculture and Wood IndustryDurango State UniversityDurangoMexico
  7. 7.Forest Survey of IndiaDehradunIndia

Personalised recommendations