European Journal of Forest Research

, Volume 135, Issue 3, pp 531–538 | Cite as

Whole-tree, stem-only, and stump harvesting impacts on site nutrient capital of a Norway spruce-dominated peatland forest

  • Mika NieminenEmail author
  • Raija Laiho
  • Sakari Sarkkola
  • Timo Penttilä
Original Paper


About 15 million hectares of peat soils have been drained for forestry in temperate and boreal zones. Increasing interest in wood biomass as a source of bioenergy has led to more intensive harvests also in peatland forests. These harvestings remove branches, needles, and stump/root systems that would earlier have remained on-site. However, in drained peatland forests, some key growth-limiting nutrients, such as potassium (K) and boron (B), are largely stored in the living tree biomass, while the stores in peat in tree rooting layer are small. A concern has thus been raised that bioenergy harvesting may induce nutrient insufficiency and decrease second rotation forest productivity. We studied the effect of whole-tree and stump harvesting on site nitrogen (N), phosphorus (P), K, and B capitals in final harvesting of a well-productive, Norway spruce-dominated peatland forest. Harvesting of stumps and above-ground harvest residues resulted in minor depletion of site N and P stores, but significant depletion of K and B. Maximizing harvest residue biomass recovery, but minimizing nutrient depletion, our results indicated that stump harvesting is a more feasible option than harvesting of above-ground residues. If above-ground harvest residues are to be harvested for bioenergy, K and B depletion may be decreased by letting the branches dry out somewhat and the needles fall down before branch harvesting. Combining our results with data on waterborne K losses suggested that K depletion may become a serious problem in second rotation forests on drained peatlands, even if harvest residues and stumps were left completely non-harvested.


Whole-tree harvesting Stump harvesting Final felling Nutrition Peatland forests Norway spruce 


  1. Egnell G, Hyvönen R, Högbom L et al (2007) Miljökonsekvenser av stubbskörd – en sammanställning av kunskap och kunskapsbehov. Summary: environmental aspects of stump-harvest—compilation of knowledge and knowledge gaps. Energimyndigheten Rapport 2007, ER2007, Swedish Energy Agency (in Swedish with English Summary)Google Scholar
  2. Hytönen J, Moilanen M (2014) Effect of harvesting method on the amount of logging residues in thinning of Scots pine stands. Biomass Bioenergy 67:347–353. doi: 10.1016/j.biombioe.2014.05.004 CrossRefGoogle Scholar
  3. Ilvesniemi H, Hartman M, Hytönen J et al (2012) Energiapuun korjuun vaikutukset metsiin ja vesistöihin. In: Asikainen A, Ilvesniemi H, Sievänen R, Vapaavuori E, Muhonen T (eds) Bioenergia, ilmastonmuutos ja Suomen metsät. Working Pap Finn For Res Inst 240:53–82 (in Finnish)Google Scholar
  4. Joensuu S, Ahti E, Vuollekoski M (2002) Effects of ditch network maintenance on the chemistry of run-off water from peatland forests. Scand J For Res 17:238–247. doi: 10.1080/028275802753742909 CrossRefGoogle Scholar
  5. Joensuu S, Vuollekoski M, Karosto K (2006) Kunnostusojitusten pitkäaikaisvaikutuksia. In: Kenttämies K, Mattsson T (eds) Metsätalouden vesistökuormitus – MESUVE-projektin loppuraportti. Suomen ympäristö 816:83–90 (in Finnish)Google Scholar
  6. Kaila A, Sarkkola S, Laurén A et al (2014) Phosphorus export from drained Scots pine mires after clear-felling and bioenergy harvesting. For Ecol Manag 325:99–107. doi: 10.1016/j.foreco.2014.03.025 CrossRefGoogle Scholar
  7. Kaunisto S (1996) Massahakemenetelmä ja ravinnepoistuma rämeen ensiharvennusmänniköissä. Finn For Res Inst Res Pap 593:15–23 (In Finnish) Google Scholar
  8. Laasasenaho J (1982) Taper curve and volume functions for pine, spruce and birch. Comm Inst Fenn 108:1–74Google Scholar
  9. Laiho R (1997) Plant biomass dynamics in drained mires in southern Finland – Implication for carbon and nutrient balance. Dissertation, University of HelsinkiGoogle Scholar
  10. Laiho R, Laine J (1995) Changes in mineral element concentrations in peat soils drained for forestry in Finland. Scand J For Res 10:218–224CrossRefGoogle Scholar
  11. Laiho R, Sallantaus T, Laine J (1999) The effect of forestry drainage on vertical distributions of major plant nutrients in peat soils. Plant Soil 207:169–181CrossRefGoogle Scholar
  12. Laiho R, Bhuiyan R, Straková P, Mäkiranta P, Badorek T, Penttilä T (2014) Modified ingrowth core method plus infrared calibration models for estimating fine root production in peatlands. Plant Soil 385(1–2):311–327. doi: 10.1007/s11104-014-2225-3 CrossRefGoogle Scholar
  13. Lowett GM, Schaefer DA (1992) Canopy interactions of Ca2+, Mg2+, and K+. In: Johnson DW, Lindberg SE (eds) Atmospheric deposition and forest nutrient cycling. A synthesis of the integrated forest study. Springer-Verlag New York Inc., New York, pp 253–275Google Scholar
  14. Lundin L (1999) Effects on hydrology and surface water chemistry of regeneration cuttings in peatland forests. International Peat Journal 9:118–126Google Scholar
  15. Lundin L, Bergquist B (1990) Effects on water chemistry after drainage of a bog for forestry. Hydrobiol 196:167–181CrossRefGoogle Scholar
  16. Mälkönen E (1976) Effect of whole-tree harvesting on soil fertility. Silva Fenn 10:157–164CrossRefGoogle Scholar
  17. Metsätalouden kehittämiskeskus Tapio (2010) Hyvän metsänhoidon suositukset. Energiapuun korjuu ja kasvatus. Metsäkustannus Oy (in Finnish)Google Scholar
  18. Miettinen J, Ollikainen M, Nieminen TM et al (2014) Whole-tree harvesting with stump removal versus stem-only harvesting in peatlands when water quality, biodiversity conservation and climate change mitigation matter. For Policy Econ 47:25–35. doi: 10.1016/j.forpol.2013.08.005 CrossRefGoogle Scholar
  19. Nurmi J (2007) Recovery of logging residues for energy from spruce (Picea abies) dominated stands. Biomass Bioenergy 31(6):375–380. doi: 10.1016/j.biombioe.2007.01.011 CrossRefGoogle Scholar
  20. Paavilainen E, Päivänen J (1995) Peatland forestry: ecology and principles Ecological studies 111. Springer, BerlinCrossRefGoogle Scholar
  21. Palviainen M, Finér L (2012) Estimation of nutrient removals in stem-only and whole-tree harvesting of Scots pine, Norway spruce, and birch stands with generalized nutrient equations. Eur J For Res 2012:945–964. doi: 10.1007/s10342-011-0567-4 CrossRefGoogle Scholar
  22. Pirinen P, Simola H, Aalto J, Kaukoranta J-P, Karsson P, Ruuhela R (2012) Tilastoja Suomen ilmastosta 1981–2010, Climatological statistics of Finland 1981–2010. Ilmatieteen laitos, Finnish Meteorological InstituteGoogle Scholar
  23. Ruoho-Airola T, Alapiippola B, Salminen K, Varjoranta R (2003) An investigation of base cation deposition in Finland. Boreal Environ Res 8:83–95Google Scholar
  24. Sarkkola S, Alenius V, Hökkä H, Laiho R, Päivänen J, Penttilä T (2003) Changes in structural inequality in Norway spruce stands on peatland sites after water-level drawdown. Can J For Res 33:222–231. doi: 10.1139/x02-179 CrossRefGoogle Scholar
  25. Schauffler M, Jacobson GL, Pugh AL, Norton SA (1996) Influence of vegetational structure on capture of salt and nutrient aerosols in a Maine peatland. Ecol Appl 6:263–268CrossRefGoogle Scholar
  26. Stachurski A, Zimka JR (2000) Atmospheric input of elements to forest ecosystems: a method of estimation using artificial foliage placed above rain collectors. Environ Pollut 110:345–356CrossRefPubMedGoogle Scholar
  27. Vasander H, Laine J (2008) Site type classification on drained peatlands. In: Korhonen R, Korpela L, Sarkkola S (eds) Finland–Fenland. Research and sustainable utilisation of peatlands. Finnish Peatland Society, Maahenki ltd, pp 146–151Google Scholar
  28. Westman CJ, Laiho R (2003) Nutrient dynamics of drained peatland forests. Biogeochem 63:269–298. doi: 10.1023/A:1023348806857 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Mika Nieminen
    • 1
    Email author
  • Raija Laiho
    • 1
  • Sakari Sarkkola
    • 1
  • Timo Penttilä
    • 1
  1. 1.Natural Resources Institute Finland, VantaaVantaaFinland

Personalised recommendations