Advertisement

European Journal of Forest Research

, Volume 135, Issue 3, pp 495–505 | Cite as

Fine-scale spatial genetic structure analysis in two Argentine populations of Prosopis alba (Mimosoideae) with different levels of ecological disturbance

  • C. BessegaEmail author
  • C. L. Pometti
  • M. Ewens
  • B. O. Saidman
  • J. C. Vilardi
Original Paper

Abstract

Spatial genetic structure (SGS) in plants is primarily determined by the interaction between pollen and seed dispersal, but it is strongly affected by both evolutionary and ecological processes. SGS studies in forest species also allow evaluating the consequences of human-mediated disturbance on pollen and seed movement and designing strategies of sustainable use of native forest resources. The present paper compares fine-scale SGS between two populations of Prosopis alba: Fernandez-Forres (FF) and Campo Duran (CD), based on the variation of 12 SSR markers. Populations show different history, management, and levels of disturbance. FF is highly disturbed and fragmented by agricultural activity and stock-breeding. Although no significant differences were observed in genetic variability parameters, highly significant genetic differentiation was detected with virtually no admixture between populations. SGS was positive and significant at short distances only in the non-disturbed population of CD. Accordingly, estimated neighborhood size and effective gene dispersal are higher in FF than in CD. This result might be explained by the higher incidence of livestock in seed dispersal and the patchy structure favoring longer pollen movement and artificial thinning and selection in FF. The results are relevant to conservation and breeding programs, suggesting that the distance between seed trees to be sampled should be larger than 22 m, the estimated distance of significant SGS in P. alba.

Keywords

Autocorrelation analysis Isolation by distance Neighborhood size Pollen dispersal Spatial genetic structure 

Notes

Acknowledgments

This research was supported by funding from Agencia Nacional de Promoción Científica y Tecnológica (ANPCYT): PICT2013-0478, PICTO OTNA 2011-0081, and Universidad de Buenos Aires (UBA): 20020100100008 given to JCV and BOS.

References

  1. Agapow PM, Burt A (2001) Indices of multilocus linkage disequilibrium. Mol Ecol Notes 1:101–102CrossRefGoogle Scholar
  2. Assoumane AA, Vaillant A, Mayaki Z, Verhaegen D (2009) Isolation and characterization of microsatellite markers for Acacia Senegal (L.) Willd, a multipurpose arid and semi-arid tree. Mol Ecol Resour 9(5):1380–1383CrossRefPubMedGoogle Scholar
  3. Bessega C, Ferreyra L, Julio N, Montoya S, Saidman BO, Vilardi JC (2000a) Mating system parameters in species of genus Prosopis (Leguminosae). Hereditas 132:19–27CrossRefPubMedGoogle Scholar
  4. Bessega C, Ferreyra L, Saidman B, Vilardi J (2000b) Unexpected low genetic differentiation among allopatric species of section Algarobia of Prosopis (Leguminosae). Genetica 109:255–266CrossRefPubMedGoogle Scholar
  5. Bessega C, Saidman BO, Darquier MR, Ewens M, Sánchez L, Rozenberg P, Vilardi JC (2009) Consistency between marker and genealogy-based heritability estimates in an experimental stand of Prosopis alba (Leguminosae). Am J Bot 96:458–465CrossRefPubMedGoogle Scholar
  6. Bessega C, Pometti CL, Ewens M, Saidman BO, Vilardi JC (2011) Strategies for conservation for disturbed Prosopis alba (Leguminosae, Mimosoidae) forests based on mating system and pollen dispersal parameters. Tree Genet Genomes 8:277–288CrossRefGoogle Scholar
  7. Bessega C, Pometti CL, Miller JT, Watts R, Saidman BO, Vilardi JC (2013) New microsatellite loci for Prosopis alba and P. chilensis (Fabaceae). Appl Plant Sci 1(5): 1200324. doi: 10.3732/apps.1200324, http://www.bioone.org/loi/apps
  8. Bessega C, Pometti CL, Ewens M, Saidman BO, Vilardi JC (2014) Evidences of local adaptation in quantitative traits in Prosopis alba (Leguminosae). Genetica 143:31–44CrossRefPubMedGoogle Scholar
  9. Bessega C, Pometti CL, Ewens M, Saidman BO, Vilardi JC (2015) Improving initial trials in tree breeding using kinship and breeding values estimated in the wild: the case of Prosopis alba in Argentina. New For 46:427–448. doi: 10.1007/s11056-015-9469-5 CrossRefGoogle Scholar
  10. Bittencourt JVM, Sebbenn AM (2007) Patterns of pollen and seed dispersal in a small, fragmented population of the wind-pollinated tree Araucaria angustifolia in southern Brazil. Heredity 99:580–591CrossRefPubMedGoogle Scholar
  11. Born C, Hardy OJ, Chevalier MH, Ossari S, Attéke EJW, Hossaert-Mckey M (2008) Small-scale spatial genetic structure in the central African rainforest tree species Aucoumea klaineana: a stepwise approach to infer the impact of limited gene dispersal, population history and habitat fragmentation. Mol Ecol 17(8):2041–2050. doi: 10.1111/j.1365-294X.2007.03685.x CrossRefPubMedGoogle Scholar
  12. Bradshaw AD (1972) Some of the evolutionary consequences of being a plant. Evol Biol 5:2547Google Scholar
  13. Bruvo R, Michiels NK, D’Souza TG, Schulenburg H (2004) A simple method for the calculation of microsatellite genotype distances irrespective of ploidy level. Mol Ecol 13(7):2101–2106CrossRefPubMedGoogle Scholar
  14. Cavers S, Degen B, Caron H, Lemes MR, Salgueiro RF, Lowe AJ (2005) Optimal sampling strategy for estimation of spatial genetic structure in tree populations. Heredity 95:281–289. doi: 10.1038/sj.hdy.6800709 CrossRefPubMedGoogle Scholar
  15. Chybicki IJ, Oleksa A, Burczyk J (2011) Increased inbreeding and strong kinship structure in Taxus baccata estimated from both AFLP and SSR data. Heredity 107:589–600CrossRefPubMedPubMedCentralGoogle Scholar
  16. Curtu AL, Craciunesc J, Enescu CM, Vidalis A, Sofletea N (2015) Fine-scale spatial genetic structure in a multi-oak-species (Quercus spp.) forest. Iforest 8:324–332. doi: 10.3832/ifor1150-007 CrossRefGoogle Scholar
  17. Darquier MR, Bessega C, Cony M, Vilardi JC, Saidman BO (2013) Evidence of heterogeneous selection on quantitative traits of Prosopis flexuosa (Leguminosae) from multivariate Q STF ST test. Tree Genet Genomes 9:307–320. doi: 10.1007/s11295-012-0556-x CrossRefGoogle Scholar
  18. Degen B, Streiff R, Ziegenhagen B (1999) Comparative study of genetic variation and differentiation of two pedunculate oak (Quercus robur) stands using microsatellite and allozyme loci. Heredity 83:597–603. doi: 10.1038/sj.hdy.6886220 CrossRefPubMedGoogle Scholar
  19. Dick CW, Hardy OJ, Jones FA, Petit RJ (2008) Spatial Scales of pollen and seed-mediated gene flow in tropical rain forest trees. Trop Plant Biol 1:20–33CrossRefGoogle Scholar
  20. FAO (2007) Situación de los Bosques del Mundo, Roma, Italia. http://www.fao.org/docrep/009/a0773s/a0773s00.htm
  21. Fernández OA, Busso CA (1997) Arid and semi-arid rangelands: two thirds of Argentina. RALA report, p 200Google Scholar
  22. Ferreyra LI, Vilardi JC, Saidman BO (2007) Consistency of population genetics parameters estimated from isozyme and RAPDs dataset in species of genus Prosopis (Leguminosae, Mimosoideae). Genetica 131:217–230CrossRefPubMedGoogle Scholar
  23. Ferreyra LI, Vilardi JC, Tosto DO, Julio NB, Saidman BO (2010) Adaptive genetic diversity and population structure of the “algarrobo” [Prosopis chilensis (Molina) Stuntz] analysed by RAPD and isozymes markers. Eur J For Res 129:1011–1025CrossRefGoogle Scholar
  24. Forti G, Tambarussi EV, Kageyama PY, Moreno MA, Ferraz EM, Ibañes B, Mori GM, Vencovsky R, Sebbenn AM (2014) Low genetic diversity and intrapopulation spatial genetic structure of the Atlantic Forest tree, Esenbeckia leiocarpa Engl. (Rutaceae) Ann. For Res 57(2):165–174. doi: 10.15287/afr.2014.226 Google Scholar
  25. Fuchs EJ, Hamrick JL (2011) Mating system and pollen flow between remnant populations of the endangered tropical tree, Guaiacum sanctum (Zygophyllaceae). Conserv Genet 12:175–185CrossRefGoogle Scholar
  26. Geburek T (1993) Are genes randomly distributed over space in mature populations of sugar maple (Acer saccharum Marsh.)? Ann Bot 71:217–222CrossRefGoogle Scholar
  27. Guo SW, Thompson EA (1992) Performing the exact test of Hardy-Weinberg proportions for multiple alleles. Biometrics 48:361–372CrossRefPubMedGoogle Scholar
  28. Hamrick JL (1994) Genetic diversity and conservation in tropical forest. In: Drysdale RM, Yapa JSA (eds) Proceedings on international symposium on genetic conservation and production of tropical forest tree seed. Asia–Canada Forest Tree Seed Centre, Muack-Lek, pp 1–9Google Scholar
  29. Hamrick JL, Godt MJW, Sherman-Broyles SL (1992) Factors influencing levels of genetic diversity in woody plant species. New For 6:95–124CrossRefGoogle Scholar
  30. Hardy OJ, Vekemans X (2002) SPAGEDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes 2:618–620CrossRefGoogle Scholar
  31. Kalinowski ST, Taper ML (2006) Maximum likelihood estimation of the frequency of null alleles at microsatellite loci. Conserv Genet 7:991–995. doi: 10.1007/s10592-006-9134-9 CrossRefGoogle Scholar
  32. Kamvar ZN, Tabima JF, Grünwald NJ (2014) Poppr: an R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ 2:281. doi: 10.7717/peerj.281 CrossRefGoogle Scholar
  33. Kamvar ZN, Brooks JC, Grünwald NJ (2015) Novel R tools for analysis of genome-wide population genetic data with emphasis on clonality. Front Genet 6:208. doi: 10.3389/fgene.2015.00208 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Karhunen M (2013) RAFM: admixture f-model. R package version. http://CRAN.R-project.org/package=RAFM
  35. Levin DA, Kerster H (1974) Gene flow in seed plants. Evol Biol 7:139–220Google Scholar
  36. Loiselle BA, Sork VL, Nason J, Graham C (1995) Spatial genetic structure of a tropical understory shrub, Psychotria officinalis (Rubiaceae). Am J Bot 82:1420–1425CrossRefGoogle Scholar
  37. Lopez-Gallego C, O’Neil P (2010) Life-story variation following habitat degradation associated with differing fine scale spatial. Pop Ecol 52:191–201CrossRefGoogle Scholar
  38. Lowe AJ, Boshier D, Ward M, Bacles CFE, Navarro C (2005) Genetic resource impacts of habitat loss and degradation; reconciling empirical evidence and predicted theory for neotropical trees. Heredity 95:255–273CrossRefPubMedGoogle Scholar
  39. Moran EV, Clark JS (2012) Between-site differences in the scale of dispersal and gene flow in red oak. PLoS One 7(5):e36492. doi: 10.1371/journal.pone.0036492 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Mottura MC, Finkeldey R, Verga AR, Gailing O (2005) Development and characterization of microsatellite markers for Prosopis chilensis and Prosopis flexuosa and cross-species amplification. Mol Ecol Notes 5:487–489CrossRefGoogle Scholar
  41. Nei M (1978) Estimation of average heterozygosity and genetic distance for small number of individuals. Genetics 89:583–590PubMedPubMedCentralGoogle Scholar
  42. Nielsen R, Tarpy DR, Reeve HK (2003) Estimating effective paternity number in social insects and the effective number of alleles in a population. Mol Ecol 12:3157–3164CrossRefPubMedGoogle Scholar
  43. Pacheco LF, Simonetti JA (2000) Genetic structure of a mimosoid tree deprived of its seed disperser, the spider monkey. Conserv Biol 14(6):1766–1775CrossRefGoogle Scholar
  44. Paffetti D, Travaglini D, Buonamici A, Nocentini S, Vendramin GG, Giannini R, Vettori C (2012) The influence of forest management on beech (Fagus sylvatica L.) stand structure and genetic diversity. For Ecol Manag 284:34–44. doi: 10.1016/j.foreco.2012.07.026 CrossRefGoogle Scholar
  45. Pandey M, Gailing O, Fischer D, Hattemer R, Finkeldey HH (2004) Characterization of microsatellite markers in sycamore (Acer pseudoplatanus L.). Mol Ecol Notes 4:253–255CrossRefGoogle Scholar
  46. Pardini EA, Hamrick JL (2008) Inferring recruitment history from spatial genetic structure within populations of the colonizing tree Albizia julibrissin (Fabaceae). Mol Ecol 17:2865–2879. doi: 10.1111/j.1365-294X.2008.03807.x CrossRefPubMedGoogle Scholar
  47. Pometti CL, Pizzo B, Brunetti M, Macchioni N, Ewens M, Saidman BO (2009) Argentinean native wood species: physical and mechanical characterization of some Prosopis species and Acacia aroma (Leguminosae; Mimosoideae). Bioresour Technol 100(6):1999–2004CrossRefPubMedGoogle Scholar
  48. Premoli AC, Kitzberger T (2005) Regeneration mode affects spatial genetic structure of Nothofagus dombeyi forests in northwestern Patagonia. Mol Ecol 14:2319–2329CrossRefPubMedGoogle Scholar
  49. Prevosti A (1974) La distancia genética entre poblaciones. Miscellanea Alcobe 68:109–118Google Scholar
  50. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedPubMedCentralGoogle Scholar
  51. Pritchard JK, Wen X, Falush D (2009) STRUCTURE ver. 2.3., University of Chicago, Chicago. http://pritch.bsd.uchicago.edu/
  52. R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. ISBN 3-900051-07-0, http://www.r-project.org/
  53. Rajendra KC, Seifert S, Prinz K, Gailing O, Finkeldey R (2014) Subtle human impacts on neutral genetic diversity and spatial patterns of genetic variation in European beech (Fagus sylvatica). For Ecol Manag 319(2014):138–149CrossRefGoogle Scholar
  54. Roig FA (1993) Aportes a la Etnobotánica del Genero Prosopis. In: Contribuciones Mendocinas a la quinta Reuni6n Regional para América Latina y el Caribe de la Red de Forestación del CIID. Unidades de Botánica y Fisiología vegetal IADIZA, pp 99–121Google Scholar
  55. Rousset F (2000) Genetic differentiation between individuals. J Evol Biol 13:58–62CrossRefGoogle Scholar
  56. Rousset F, Raymond M (1995) Testing heterozygote excess and deficiency. Genetics 140:1413–1419PubMedPubMedCentralGoogle Scholar
  57. Salto CS (2011) Variación genética en progenies de polinización abierta de Prosopis alba Griseb. de la Región Chaqueña. Maestría en genética vegetal, Thesis. Area de mejoramiento genético UNR, ConcordiaGoogle Scholar
  58. Schroeder JW, Trana HT, Dick CW (2014) Fine scale spatial genetic structure in Pouteria reticulata (Engl.) Eyma (Sapotaceae), a dioecious, vertebrate dispersed tropical rain forest tree species. Glob Ecol Conserv 1:43–49CrossRefGoogle Scholar
  59. Secretaría de Ambiente y Desarrollo Sustentable de la Nación (2004) Dirección de Bosques, Unidad de Manejo del Sistema de Evaluación Forestal, Informe sobre deforestación en ArgentinaGoogle Scholar
  60. Sjölund MJ, Jump AS (2015) Coppice management of forests impacts spatial genetic structure but not genetic diversity in European beech (Fagus sylvatica L.). For Ecol Manage 336:65–71CrossRefGoogle Scholar
  61. Vekeman X, Hardy OJ (2004) New insights from fine-scale spatial genetic structure analyses in plant populations. Mol Ecol 13:921–935CrossRefGoogle Scholar
  62. Wang BC, Sork VL, Leong MT, Smith TB (2007) Hunting of mammals reduces seed removal and dispersal of the afrotropical tree Antrocaryon klaineanum (Anacardiaceae). Biotropica 39(3):340–347CrossRefGoogle Scholar
  63. Wright S (1943) Isolation by distance. Genetics 28:114–138PubMedPubMedCentralGoogle Scholar
  64. Zeng X, Michalski SG, Fischer M, Durka W (2011) Species diversity and population density affect genetic structure and gene dispersal in a subtropical understory shrub. J Plant Ecol. doi: 10.1093/jpe/rtr029 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • C. Bessega
    • 1
    Email author
  • C. L. Pometti
    • 1
  • M. Ewens
    • 2
  • B. O. Saidman
    • 1
  • J. C. Vilardi
    • 1
  1. 1.Laboratorio de Genética, Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Instituto IEGEBA (CONICET-UBA)Universidad de Buenos AiresBuenos AiresArgentina
  2. 2.Estación Experimental Fernández, Departamento de RoblesUniversidad Católica Santiago del Estero (UCSE)Santiago del EsteroArgentina

Personalised recommendations