European Journal of Forest Research

, Volume 135, Issue 3, pp 433–449 | Cite as

How does deadwood structure temperate forest bat assemblages?

  • Laurent TillonEmail author
  • Christophe Bouget
  • Yoan Paillet
  • Stéphane Aulagnier
Original Paper


Thirty percent of forest species depend on deadwood. Some of them are now considered rare or at high risk of extinction mainly due to an insufficient quantity of deadwood substrates. Some bats roost in dead trees and snags. Because European bats are strictly insectivorous, we can wonder whether deadwood plays an important role by providing potential preys too. We conducted ultrasonic surveys in different deciduous French forests dominated by oaks (Quercus spp.) and beech (Fagus sylvatica). Our results showed a positive relationship between the volume of deadwood and the richness of bat species. Some species were positively related to deadwood volumes, either lying or standing, with detected thresholds. Species richness increased particularly from 25 m3 per hectare of standing deadwood. This link can be explained by deadwood-dwelling preys or by changes in the forest structure, due to openings created by dead trees that are favorable for edge-habitat species. Other species negatively reacted to the presence of deadwood, either because bats were not able to forage there or because dead trees did not provide relevant preys. Contrary to our hypothesis, clutter by foliage and basal area of the living trees explained more the presence/occurrence of gleaning bats than deadwood. Whereas several species were considered as forest bats (Myotis bechsteinii, Plecotus auritus, Barbastella barbastellus), we did not find any relationship between their occurrence and deadwood. This result strengthens the need of further studies on the relationships between forest habitats and bat assemblages.


Chiroptera Oak forest Dead trees Forest glade Conservation Forest management 



This research was partially funded by the French Ministry in charge of Ecology through the program “Biodiversité, Gestion Forestière et Politiques Publiques” (BGF), convention GNB 10-MBGD-BGF-1-CVS-092, no. CHORUS 2100 214°651. We thank the members of the mammal network of the French forest office (Office National des Forêts) for their help in the establishment of listening plots. We thank Dorine Pasqualini for the proofreading of the English translation.


  1. Alpizar-Jara R, Nichols JD, Hines JE, Sauer JR, Pollock KH, Rosenberry CS (2004) The relationship between species detection probability and local extinction probability. Oecologia 141:652–660. doi: 10.2307/40005624 CrossRefPubMedGoogle Scholar
  2. Archaux F, Tillon L, Fauvel B, Martin H (2013) Foraging habitat use by bats in a large temperate oak forest: importance of mature and regeneration stands. Le Rhinolophe 19:47–58Google Scholar
  3. Arlettaz R (1996) Feeding behaviour and foraging strategy of free-living Mouse-Eared bats, Myotis myotis and Myotis blythii. Anim Behav 51:1–11CrossRefGoogle Scholar
  4. Arlettaz R, Godat S, Meyer H (2000) Competition for food by expanding Pipistrelle bat populations (Pipistrellus pipistrellus) might contribute to the decline of Lesser Horseshoe bats (Rhinolophus hipposideros). Biol Conserv 93:55–60CrossRefGoogle Scholar
  5. Barataud M (2012) Ecologie acoustique des chiroptères d’Europe, Identification des espèces, Étude de leurs habitats et comportements de chasse. Biotope, Mèze & Muséum national d’histoire naturelle, ParisGoogle Scholar
  6. Barataud M, Grandemange F, Duranel A, Lugon A (2009) Etude d’une colonie de mise-bas de Myotis bechsteinii Kuhl, 1817—Sélection des gîtes et des habitats de chasse, régime alimentaire et implications dans la gestion de l’habitat forestier. Le Rhinolophe 18:83–112Google Scholar
  7. Barclay RMR, Kurta A (2007) Ecology and behavior of bats roosting in tree cavities and under bark. In: Lacki MJ, Hayes JP, Kurta A (eds) Bats in forests—conservation and management. The Johns Hopkins University Press, Baltimore, pp 17–59Google Scholar
  8. Bartonička T, Rehak Z, Andreas M (2008) Diet composition and foraging activity of Pipistrellus pygmaeus in a floodplain forest. Biologia 63(2):1–7Google Scholar
  9. Beck A (1995) Fecal analyses of European bat species. Myotis 32–33:109–119Google Scholar
  10. Beuneux G, Courtois J-Y, Rist D (2010) La grande noctule (Nyctalus lasiopterus) en milieu forestier en Corse: Bilan des connaissances sur les arbres-gîtes et les territoires de chasse fréquentés. Symbioses 25:1–8Google Scholar
  11. Boonman AM (1996) Monitoring bats on their hunting grounds. Myotis 34:17–25Google Scholar
  12. Bouget C, Gosselin F (2012) Le volume de bois mort, indicateur indirect de biodiversité: Une approche critique. Rev For Fr 64:723–731Google Scholar
  13. Bouget C, Larrieu L, Nusillard B, Parmain G (2013) In search of the best local habitat drivers for saproxylic beetle diversity in temperate deciduous forests. Biodivers Conserv 22:2111–2130CrossRefGoogle Scholar
  14. Brin A, Brustel H, Jactel H (2009) Species variables or environmental variables as indicators of forest biodiversity: a case study using saproxylic beetles in maritime pine plantations. Ann For Sci. doi: 10.1051/forest/20090091 Google Scholar
  15. Bunnell FL, Houde I, Johnston B, Wind E (2002) How dead trees sustain live organisms in western forests. USDA For Serv Gen Tech Rep 181:291–318Google Scholar
  16. Burford LS, Lacki MJ, Covell CVJ (1999) Occurrence of moths among habitats in a mixed mesophytic forest: implications for management of forest bats. For Sci 45:323–332Google Scholar
  17. Dajoz R (1998) Les insectes et la forêt. Lavoisier Tec & Doc, ParisGoogle Scholar
  18. Dondini G, Vergari S (1999) First data on the diets of Nyctalus leisleri (Kuhl, 1817) and Myotis bechsteinii (Kuhl, 1817) in the Tuscan-Emilian Appennines (North-central Italy). In: Ani 1° Convegno Italiano Sui Chirotteri, 191–195Google Scholar
  19. Ford WM, Menzel MA, Rodrigue JL, Menzel JM, Johnson JB (2005) Relating bat species presence to simple habitat measures in a Central Appalachian Forest. Biol Conserv 126:528–539CrossRefGoogle Scholar
  20. Franc N, Götmark F, Økland B, Nordén B, Paltto H (2007) Factors and scales potentially important for saproxylic beetles in temperate mixed oak forest. Biol Conserv 135:86–98CrossRefGoogle Scholar
  21. Gannon WL, Sherwin RE (2004) Are acoustic detectors a ‘silver bullet’ for assessing habitat use by bats? In: Brigham RM, Kalko EKV, Jones G, Parsons S, Limpens HJGA (eds) Bat echolocation research: tools, techniques and analysis. Bat Conserv Int, Austin, pp 38–45Google Scholar
  22. Gonzalo-Turpin H, Sirami C, Brotons L, Gonzalo L, Martin J-L (2008) Teasing out biological effects and sampling artifacts when using occupancy rate in monitoring programs. J Field Ornithol 79:159–169CrossRefGoogle Scholar
  23. Good JA, Speight CD (1996) Les invertébrés saproxyliques et leur protection à travers l’Europe. StrasbourgGoogle Scholar
  24. Gregor F, Bauerova Z (1987) The role of Diptera in the diet of Natterer’s Bat, Myotis nattereri. Folia Zool 36:13–19Google Scholar
  25. Grove SJ (2002) Saproxylic insect ecology and the sustainable management of forests. Annu Rev Ecol Syst 33:1–23CrossRefGoogle Scholar
  26. Guldin JM, Emmingham WH, Carter SA, Saugey DA (2007) Silvicultural practices and management of habitat for bats. In: Lacki MJ, Hayes JP, Kurta A (eds) Bats in forests—conservation and management. The Johns Hopkins University Press, Baltimore, pp 177–205Google Scholar
  27. Hayes JP, Loeb SC (2007) The influences of forest management on bats in North America. In: Lacki MJ, Hayes JP, Kurta A (eds) Bats in forests—conservation and management. The Johns Hopkins University Press, Baltimore, pp 207–235Google Scholar
  28. Hillen J, Kiefer A, Veith M (2010) Interannual fidelity to roosting habitat and flight paths by female Western Barbastelle bats. Acta Chiropterol 12:187–195CrossRefGoogle Scholar
  29. Hothorn T, Hornik K, Zeilis A (2006) Party: a laboratory for recursive part(y)itioning.
  30. Jones G, Rydell J (2003) Attack and defense: Interactions between echolocating bats and their insect prey. In: Kunz TH, Fenton MB (eds) Bat ecology. The University of Chicago Press, Chicago and London, pp 301–345Google Scholar
  31. Jonsell M, Weslien J, Ehnström B (1998) Substrate requirements of red-listed saproxylic invertebrates in Sweden. Biodivers Conserv 7:749–764CrossRefGoogle Scholar
  32. Jung K, Kaiser S, Böhm S, Nieschulze J, Kalko EKV (2012) Moving in three dimensions: effects of structural complexity on occurrence and activity of insectivorous bats in managed forest stands. J Appl Ecol 49(2):523–531CrossRefGoogle Scholar
  33. Kalcounis-Rüppell MC, Psyllakis JM, Brigham RM (2005) Tree roost selection by bats: an empirical synthesis using meta-analysis. Wild Soc Bull 33:1123–1132CrossRefGoogle Scholar
  34. Kennedy J-P, Sillett SC, Szewczak JM (2014) Bat activity across the vertical gradient of an old-growth Sequoia Sempervirens forest. Acta Chiropterol 16:53–63CrossRefGoogle Scholar
  35. Kerth G, König B (1999) Fission, fusion and nonrandom associations in female Bechstein’s bats (Myotis bechsteinii). Behaviour 136:1187–1202CrossRefGoogle Scholar
  36. Kervyn T, Godin M-C, Jocqué R, Grootaert P, Libois R (2012) Web-building spiders and blood-feeding flies as prey of the notch-eared bat (Myotis emarginatus). Belg J Zool 142(1):59–67Google Scholar
  37. Kunz TH, Thomas DW, Richards GC, Tidermann CR, Pierson ED, Racey PA (1996) Observational techniques for bats. In: Wilson DE, Cole FR, Nichols JD, Rudran R, Foster MS (eds) Measuring and monitoring biological diversity, standard methods for mammals. Smithsonian Institute Press, Washington and London, pp 105–114Google Scholar
  38. Lachat T, Wermelinger B, Gossner MM, Bussler H, Isacsson G, Müller J (2012) Saproxylic beetles as indicator species for dead-wood amount and temperature in European beech forests. Ecol Indic 23:323–331CrossRefGoogle Scholar
  39. Lacki MJ, Amelon SK, Baker MD (2007a) Foraging ecology of bats in forests. In: Lacki MJ, Hayes JP, Kurta A (eds) Bats in forests—conservation and management. The Johns Hopkins University Press, Baltimore, pp 83–127Google Scholar
  40. Lacki MJ, Hayes JP, Kurta A (2007b) Bats in forests—conservation and management. The Johns Hopkins University Press, BaltimoreGoogle Scholar
  41. Lino A, Fonseca C, Goiti U, Joao Ramos Pereira M (2014) Prey selection by Rhinolophus hipposideros (Chiroptera, Rhinolophidae) in a modified forest in southwest Europe. Acta Chiropt 16(1):75–83CrossRefGoogle Scholar
  42. Marshall PL, Davis G, LeMay VM (2000) Using line intersect sampling for coarse woody debris. Technical report. Vancouver Forest Region, Forest Service, Nanaimo, CanadaGoogle Scholar
  43. Mehr M, Brandl R, Kneib T, Müller J (2012) The effect of bark beetle infestation and salvage logging on bat activity in a National Park. Biodivers Conserv 21:2775–2786CrossRefGoogle Scholar
  44. Meschede A, Heller K-G (2003) Ecologie et protection des Chauves-souris en milieu forestier. Le Rhinolophe 16:1–248Google Scholar
  45. Middleton NE, Gould C, Macadam CR, Mackenzie S, Morrison K (2005) A new methodology for surveying bats in narrow habitat corridors. BaTML Publications 2:2–8Google Scholar
  46. Motte G, Libois R (2003) Régime alimentaire des Plecotus en période pré-hivernale et hivernale en Belgique. Symbioses 9:57Google Scholar
  47. Müller J, Bussler H (2008) Key factors and critical thresholds at stand scale for saproxylic beetles in a beech dominated forest, Southern Germany. Rev Ecol (Terre Vie) 63:73–82Google Scholar
  48. Müller J, Engel H, Blaschke M (2007) Assemblages of wood-inhabiting fungi related to silvicultural management intensity in beech forests in Southern Germany. Eur J For Res 126:513–527CrossRefGoogle Scholar
  49. Müller J, Mehr M, Bässler C, Fenton MB, Hothorn T, Pretzsch H, Klemmt H-J, Brandl R (2012) Aggregative response in bats: prey abundance versus habitat. Oecologia 169:673–684CrossRefPubMedGoogle Scholar
  50. Müller J, Brandl R, Buchner J, Pretzsch H, Seifert S, Strätz C, Veith M, Fenton B (2013) From ground to above canopy—bat activity in mature forests is driven by vegetation density and height. For Ecol Manag 306:179–184CrossRefGoogle Scholar
  51. Nilsson SG, Baranowski R (1997) Habitat predictability and the occurrence of wood beetles in old-growth beech forests. Ecography 20:491–498CrossRefGoogle Scholar
  52. Obrist MK, Boesch R, Flückiger PF (2004) Variability in echolocation call design of 26 Swiss bat species: consequences, limits and option for automated field identification with a synergetic pattern recognition approach. Mammalia 68:307–322CrossRefGoogle Scholar
  53. Økland B (1996) Unlogged forests: important sites for preserving the diversity of Mycetophilids (Diptera: Sciaroidea). Biol Conserv 76:297–310CrossRefGoogle Scholar
  54. Otto H-J (1998) Ecologie Forestière. Institut pour le Développement ForestierGoogle Scholar
  55. Paillet Y, Bergès L, Hjältén J et al (2010) Biodiversity differences between managed and unmanaged forests: meta-analysis of species richness in Europe. Conserv Biol 24:101–112CrossRefPubMedGoogle Scholar
  56. Paillet Y, Pernot C, Boulanger V, Debaive N, Fuhr M, Gilg O, Gosselin F (2015) Quantifying the recovery of old-growth attributes in forest reserves: a first reference for France. For Ecol Manag 346:51–64CrossRefGoogle Scholar
  57. Patterson BD, Willig MR, Stevens RD (2003) Trophic strategies, niche partitioning, and patterns of ecological organization. In: Kunz TH, Fenton MB (eds) Bat ecology. The University of Chicago Press, Chicago and London, pp 536–579Google Scholar
  58. Pénicaud P (2006) Enquête nationale sur les arbres-gîtes à chauves-souris arboricoles. Mammifères Sauvages 52:16–18Google Scholar
  59. Plank M, Fiedler K, Reiter G (2012) Use of forest strata by bats in temperate forests. J Zool 286:154–162CrossRefGoogle Scholar
  60. Rieger I, Nagel P (2007) Vertical stratification of bat activity in a deciduous forest. In: Unterseher M, Morawetz W, Klotz S, Arndt E (eds) The canopy of a temperate floodplain forest—results from five years of research at the Leipzig Canopy Crane. The Leipzig Canopy Crane Project, Universität Leipzig (Germany), pp 141–149Google Scholar
  61. Roué SY, Barataud MC (1999) Habitats et activité de chasse des Chiroptères menacés en Europe : Synthèse des connaissances actuelles en vue d’une gestion conservatrice. Le Rhinolophe Vol. Spéc 2:1–136Google Scholar
  62. Ruczynski I, Bogdanowicz W (2005) Roost cavity selection by Nyctalus noctula and N. leisleri (Vespertilionidae, Chiroptera) in Bialowieza primeval forest, Eastern Poland. J Mammal 86:921–930CrossRefGoogle Scholar
  63. Russo D, Cistrone L, Jones G, Mazzoleni S (2004) Roost selection by Barbastelle bats (Barbastella barbastellus, Chiroptera: Vespertilionidae) in beech woodlands of Central Italy: consequences for conservation. Biol Conserv 117:73–81CrossRefGoogle Scholar
  64. Russo D, Cistrone L, Garonna AP, Jones G (2010) Reconsidering the importance of harvested forests for the conservation of tree-dwelling bats. Biodivers Conserv 19:2501–2515CrossRefGoogle Scholar
  65. Rydell J, Lancaster WC (2000) Flight and thermoregulation in moths were shaped by predation from bats. Oikos 88:13–18CrossRefGoogle Scholar
  66. Rydell J, Natuschke G, Theiler A, Zingg PE (1996) Food habits of the Barbastelle bat Barbastella barbastellus. Ecography 19:62–66CrossRefGoogle Scholar
  67. Shiel CB, McAney CM, Fairley JS (1991) Analysis of the diet of Natterer’s bat Myotis nattereri and the common long-eared bat Plecotus auritus in the West of Ireland. J Zool 223:299–305CrossRefGoogle Scholar
  68. Shiel CB, Duvergé PL, Smiddy P, Fairley JS (1998) Analysis of the diet of Leisler’s bat (Nyctalus leisleri) in Ireland with some comparative analyses from England and Germany. J Zool 246:417–425CrossRefGoogle Scholar
  69. Siemers BM, Swift SM (2006) Differences in sensory ecology contribute to resource partitioning in the bats Myotis bechsteinii and Myotis nattereri (Chiroptera: Vespertilionidae). Behav Ecol Sociobiol 59:373–380CrossRefGoogle Scholar
  70. Sierro A, Arlettaz R (1997) Barbastelle bats (Barbastella spp.) specialize in the predation of moths: implications for foraging tactics and conservation. Acta Oecol 18:91–106CrossRefGoogle Scholar
  71. Speakman JR, Rydell J (2000) Avoidance behaviour of bats and moths: when is it predator defence? Oikos 88:221–223CrossRefGoogle Scholar
  72. Swift SM (1997) Roosting and foraging behaviour of Natterer’s bats (Myotis nattereri) close to the northern border of their distribution. J Zool 242:375–384CrossRefGoogle Scholar
  73. Taake KH (1993) Strategien der Ressourcennutzung an Waldgewässern Jagender Fledermäuse (Chiroptera: Vespertilionidae). Myotis 30:7–74Google Scholar
  74. Thorn S, Hacker HH, Seibold S, Jehl H, Bässler C, Müller J (2015) Guild-specific responses of forest Lepidoptera highlight conservation-oriented forest management—implications from conifer-dominated forests. For Ecol Manag 337:41–47CrossRefGoogle Scholar
  75. Tillon L (2001) Impact de la tempête du 26 décembre 1999 sur la forêt domaniale de Rambouillet. Exemple des Chiroptères. Rev For Fr 53:83–90CrossRefGoogle Scholar
  76. Ulyshen MD (2011) Arthropod vertical stratification in temperate deciduous forests: implications for conservation-oriented management. For Ecol Manag 261:1479–1489CrossRefGoogle Scholar
  77. Vallauri D (2005) Le bois dit mort, une lacune des forêts gérées en France et en Europe. In:Vallauri D, André J, Dodelin B, Eynard-Machet R, Rambaud D (eds) Bois mort et à cavités, une clé pour des forêts vivantes. Editions Tec & Doc, Lavoisier, Paris, pp 9–17Google Scholar
  78. Vaughan N (1997) The diets of British bats (Chiroptera). Mamm Rev 27(2):77–94CrossRefGoogle Scholar
  79. Weller TJ (2007) Assessing population status of bats in forests: challenges and opportunities. In: Lacki MJ, Hayes JP, Kurta A (eds) Bats in forests—conservation and management. The Johns Hopkins University Press, Baltimore, pp 263–291Google Scholar
  80. Wolz I (1993) Das Beutespektrum der Bechsteinfledermaus Myotis bechsteini (Kuhl, 1818), Ermittelt aus Kotanalysen. Myotis 31:27–68Google Scholar
  81. Zahn A, Rottenwallner A, Güttinger R (2006) Population density of the Greater Mouse-Eared bat (Myotis myotis), local diet composition and availability of foraging habitats. J Zool 269:486–493CrossRefGoogle Scholar
  82. Zehetmair T, Müller J, Runkel V, Stahlschmidt P, Winter S, Zharov A, Gruppe A (2015) Poor effectiveness of Natura 2000 beech forests in protecting forest-dwelling bats. J Nat Conserv 23:53–60CrossRefGoogle Scholar
  83. Zeileis A, Hothorn T, Hornik K (2008) Model-based recursive partitioning. J Comput Graph Stat 17:492–514. doi: 10.1198/106186008X319331 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Laurent Tillon
    • 1
    • 2
    Email author
  • Christophe Bouget
    • 3
  • Yoan Paillet
    • 3
  • Stéphane Aulagnier
    • 4
  1. 1.Direction des Forêts et des Risques NaturelsONF Réseau mammifèresParis Cedex 12France
  2. 2.SEVABUniversité Paul SabatierToulouse Cedex 09France
  3. 3.IRSTEA, UR EFNONogent-sur-VernissonFrance
  4. 4.Comportement et Ecologie de la Faune SauvageINRACastanet Tolosan CedexFrance

Personalised recommendations