Skip to main content

Advertisement

Log in

Multiscale heterogeneity of topsoil properties in southern European old-growth forests

  • Original Paper
  • Published:
European Journal of Forest Research Aims and scope Submit manuscript

Abstract

Assessing the contribution of forest soils to carbon (C) and nutrient dynamics is extremely complex due to the high spatial variability of soil properties, at fine to very broad scales. Improving our understanding of soil variability is necessary to scale up sample-based inventory data for the estimation of regional contribution of forest soils to C dynamics. We analyzed the topsoil spatial variability of organic carbon (OC) and matter (OM), nitrogen (N), C/N ratio, texture, and pH in 11 southern European old-growth beech stands. Our aim was to assess the within- and among-stand topsoil variability, and to determine the drivers underlying this variation. For each stand, we sampled the topsoil in 25 quadrats in a 1-ha regular grid where we recorded overstorey structural and compositional attributes, deadwood quantity and quality, microtopography and site conditions. Soil parameters varied highly at both scales: When considering all the topsoil properties together through multivariate analysis, most of the variability occurred at the within-stand scale (mostly due to shifts in organic matter content, C/N, and litter depth); the opposite was true when considering soil properties singularly, with pH, soil texture, and N concentration varying greatly among stands. Most of the among-stand variability depended on climate and on the direct and indirect effects of parent material. Fine-scale variation, instead, depended mainly on overstorey composition and microtopographical variation. Surprisingly, we found no direct influence of overstorey structure on topsoil parameters, likely because soil parameters respond to changes in stand structural features only after a substantial time lag.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anderson MJ, Ellingsen KE, McArdle BH (2006) Multivariate dispersion as a measure of beta diversity. Ecol Lett 9:683–693

    Article  PubMed  Google Scholar 

  • Baritz R, Seufert G, Montanarella L, Van Ranst E (2010) Carbon concentrations and stocks in forest soils of Europe. For Ecol Manag 260:262–277. doi:10.1016/j.foreco.2010.03.025

    Article  Google Scholar 

  • Birkhofer K, Schoning I, Alt F, Herold N, Klarner B, Maraun M, Marhan S, Oelmann Y, Wubet T, Yurkov A, Begerow D, Berner D, Buscot F, Daniel R, Diekotter T, Ehnes RB, Erdmann G, Fischer C, Foesel B, Groh J, Gutknecht J, Kandeler E, Lang C, Lohaus G, Meyer A, Nacke H, Nather A, Overmann J, Polle A, Pollierer MM, Scheu S, Schloter M, Schulze ED, Schulze W, Weinert J, Weisser WW, Wolters V, Schrumpf M (2012) General relationships between abiotic soil properties and soil biota across spatial scales and different land-use types. PLoS ONE 7:e43292. doi:10.1371/journal.pone.0043292

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Burrascano S, Keeton WS, Sabatini FM, Blasi C (2013) Commonality and variability in the structural attributes of moist temperate old-growth forests: a global review. For Ecol Manag 291:458–479. doi:10.1016/j.foreco.2012.11.020

    Article  Google Scholar 

  • Burrascano S, Giarrizzo E, Bonacquisti S, Copiz R, Del Vico E, Fagiani S, Mortelliti A, Blasi C (2014) Quantifying Sus scrofa rooting effects on the understorey of the deciduous broadleaf forests in Castelporziano Estate (Italy). Rend Fis Acc Lincei. doi:10.1007/s12210-014-0350-9

    Google Scholar 

  • Calamini G, Maltoni A, Travaglini D, Iovino F, Nicolaci A, Menguzzato G, Corona P, Ferrari B, Di Santo D, Chirici G, Lombardi F (2011) Stand structure attributes in potential old-growth forests in the Apennines, Italy. Ital For Mont 66:365–381. doi:10.4129/ifm.2011.5.01

    Google Scholar 

  • Callesen I, Raulund-Rasmussen K, Westman CJ, Tau-Strand L (2007) Nitrogen pools and C:N ratios in well-drained Nordic forest soils related to climate and soil texture. Boreal Environ Res 12:681–692

    CAS  Google Scholar 

  • Collins BS, Pickett STA (1987) Influence of canopy opening on the environment and herb layer in a northern hardwoods forest. Vegetatio 70:3–10

    Google Scholar 

  • Corona P, Blasi C, Chirici G, Facioni L, Fattorini L, Ferrari B (2010) Monitoring and assessing old-growth forest stands by plot sampling. Plant Biosyst 144:171–179. doi:10.1080/11263500903560710

    Article  Google Scholar 

  • FAO (1998) Topsoil characterization for sustainable land management. Land and Water Development Division, Soil Resources, Management and Conservation Service, Rome

    Google Scholar 

  • FAO (2006) Guidelines for soil profile description and classification, 4th edn. FAO, Rome

    Google Scholar 

  • FOREST-EUROPE/UNECE/FAO (2011) State of Europe’s forests 2011. Status and trends in sustainable forest management in Europe

  • Forrester J, Mladenoff D, Gower S (2013) Experimental manipulation of forest structure: near-term effects on gap and stand scale C dynamics. Ecosystems 16:1455–1472. doi:10.1007/s10021-013-9695-7

    Article  CAS  Google Scholar 

  • Franklin JF, Spies TA, Van Pelt R, Carey AB, Thornburgh DA, Berg DR, Lindenmayer DB, Harmon ME, Keeton WS, Shaw DC, Bible K, Chen JQ (2002) Disturbances and structural development of natural forest ecosystems with silvicultural implications, using Douglas-Fir forests as an example. For Ecol Manag 155:399–423

    Article  Google Scholar 

  • Ganuza A, Almendros G (2003) Organic carbon storage in soils of the Basque Country (Spain): the effect of climate, vegetation type and edaphic variables. Biol Fertil Soils 37:154–162. doi:10.1007/s00374-003-0579-4

    CAS  Google Scholar 

  • Garten CT Jr, Kang S, Brice DJ, Schadt CW, Zhou J (2007) Variability in soil properties at different spatial scales (1 m–1 km) in a deciduous forest ecosystem. Soil Biol Biochem 39:2621–2627. doi:10.1016/j.soilbio.2007.04.033

    Article  CAS  Google Scholar 

  • Griffiths RP, Gray AN, Spies TA (2009) Soil properties in old-growth Douglas-Fir forest gaps in the western Cascade Mountains of Oregon. Northwest Sci 84:33–45. doi:10.3955/046.084.0104

    Article  Google Scholar 

  • Grüneberg E, Ziche D, Wellbrock N (2014) Organic carbon stocks and sequestration rates of forest soils in Germany. Glob Change Biol 20:2644–2662. doi:10.1111/gcb.12558

    Article  Google Scholar 

  • Hunter ML (ed) (1990) Wildlife, forests and forestry: principles of managing forests for biological diversity. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Ibáñez JJ, Zuccarello V, Ganis P, Feoli E (2014) Pedodiversity deserves attention in plant biodiversity research. Plant Biosyst 148:1112–1116. doi:10.1080/11263504.2014.980357

    Article  Google Scholar 

  • IPCC (2013) Climate change 2013: The physical science basis. contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. doi:10.1017/CBO9781107415324

  • ISRIC/FAO (2002) Procedures for soil analysis, 6th edn, Tech. Pap. 9, ISRIC, Wageningen

  • Johnson PCD (2014) Extension of Nakagawa & Schielzeth’s R2GLMM to random slopes models. Methods Ecol Evol 5:944–946. doi:10.1111/2041-210x.12225

    Article  PubMed Central  PubMed  Google Scholar 

  • Kennedy F, Pitman R (2004) Factors affecting the nitrogen status of soils and ground flora in Beech woodlands. For Ecol Manag 198:1–14. doi:10.1016/j.foreco.2004.02.065

    Article  Google Scholar 

  • Lin HS, Wheeler D, Bell J, Wilding L (2005) Assessment of soil spatial variability at multiple scales. Ecol Model 182:271–290. doi:10.1016/j.ecolmodel.2004.04.006

    Article  Google Scholar 

  • McCune B, Keon D (2002) Equations for potential annual direct incident radiation and heat load. J Veg Sci 13:603–606

    Article  Google Scholar 

  • Meier IC, Leuschner C (2010) Variation of soil and biomass carbon pools in beech forests across a precipitation gradient. Glob Change Biol 16:1035–1045. doi:10.1111/j.1365-2486.2009.02074.x

    Article  Google Scholar 

  • Miralles I, Ortega R, Almendros G, Sanchez-Maranon M, Soriano M (2009) Soil quality and organic carbon ratios in mountain agroecosystems of South-east Spain. Geoderma 150:120–128. doi:10.1016/j.geoderma.2009.01.011

    Article  CAS  Google Scholar 

  • Motta R, Bjelanovic I, Borgogno Mondino E, Curovic M, Garbarino M, Keren S, Meloni F, Berretti R (2014) Analysis of the spatio-temporal dynamics of mixed beechsilver fir-Norway spruce old-growth forests of Biogradska Gora (Montenegro) and Perucica (Bosnia and Herzegovina). Plant Biosyst. doi:10.1080/11263504.2014.945978

  • Muukkonen P, Hakkinen M, Makipaa R (2009) Spatial variation in soil carbon in the organic layer of managed boreal forest soil-implications for sampling design. Environ Monit Assess 158:67–76. doi:10.1007/s10661-008-0565-2

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa S, Schielzeth H (2013) A general and simple method for obtaining R 2 from generalized linear mixed-effects models. Methods Ecol Evol 4:133–142. doi:10.1111/j.2041-210x.2012.00261.x

    Article  Google Scholar 

  • Norden U (1994) Influence of broad-leaved tree species on pH and organic-matter content of forest topsoils in Scania, South Sweden. Scand J For Res 9:1–8. doi:10.1080/02827589409382806

    Article  Google Scholar 

  • Pan YD, Birdsey RA, Fang JY, Houghton R, Kauppi PE, Kurz WA, Phillips OL, Shvidenko A, Lewis SL, Canadell JG, Ciais P, Jackson RB, Pacala SW, McGuire AD, Piao SL, Rautiainen A, Sitch S, Hayes D (2011) A large and persistent carbon sink in the world’s forests. Science 333:988–993. doi:10.1126/science.1201609

    Article  CAS  PubMed  Google Scholar 

  • Papa S, Pellegrino A, Bartoli G, Ruosi R, Rianna S, Fuggi A, Fioretto A (2014) Soil organic matter, nutrient distribution, fungal and microbial biomass and enzyme activities in a forest beech stand on the Apennines of southern Italy. Plant Biosyst 148:1187–1198. doi:10.1080/11263504.2014.968231

    Article  Google Scholar 

  • Piao S, Fang J, Ciais P, Peylin P, Huang Y, Sitch S, Wang T (2009) The carbon balance of terrestrial ecosystems in China. Nature 458:1009–1013. doi:10.1038/nature07944

    Article  CAS  PubMed  Google Scholar 

  • Pinheiro JC, Bates DM (2000) Mixed-effects models in S and SPLUS. Springer, Berlin

    Book  Google Scholar 

  • R Development Core Team (2014) R: a language and environment for statistical computing R Foundation for Statistical Computing, Vienna, Austria

  • Rivas-Martinez S, Rivas-Saenz S (2009) Worldwide bioclimatic classification system, 1996–2009. Phytosociological Research Center

  • Sabatini F, Jiménez-Alfaro B, Burrascano S, Blasi C (2014a) Drivers of herb-layer species diversity in two unmanaged temperate forests in northern Spain. Community Ecol 15:147–157. doi:10.1556/ComEc.15.2014.2.3

    Article  Google Scholar 

  • Sabatini FM, Burrascano S, Tuomisto H, Blasi C (2014b) Ground layer plant species turnover and beta diversity in southern-European old-growth forests. PLoS ONE 9:e95244. doi:10.1371/journal.pone.0095244

    Article  PubMed Central  PubMed  Google Scholar 

  • Scharenbroch BC, Bockheim JG (2007a) Impacts of forest gaps on soil properties and processes in old growth northern hardwood-hemlock forests. Plant Soil 294:219–233. doi:10.1007/s11104-007-9248-y

    Article  CAS  Google Scholar 

  • Scharenbroch BC, Bockheim JG (2007b) Pedodiversity in an old-growth northern hardwood forest in the Huron Mountains, Upper Peninsula, Michigan. Can J For Res 37:1106–1117. doi:10.1139/x06-312

    Article  CAS  Google Scholar 

  • Schoenholtz SH, Van Miegroet H, Burger JA (2000) A review of chemical and physical properties as indicators of forest soil quality: challenges and opportunities. For Ecol Manag 138:335–356. doi:10.1016/s0378-1127(00)00423-0

    Article  Google Scholar 

  • Schrumpf M, Kaiser K, Schulze E-D (2014) Soil organic carbon and total nitrogen gains in an old growth deciduous forest in Germany. PLoS ONE 9:e89364. doi:10.1371/journal.pone.0089364

    Article  PubMed Central  PubMed  Google Scholar 

  • Sokal RR, Rohlf FJ (1995) Biometry, 3rd edn. W.H. Freeman, New York

    Google Scholar 

  • Spears JDH, Lajtha K (2005) The imprint of coarse woody debris on soil chemistry in the Western Oregon Cascades. Biogeochemistry 71:163–175. doi:10.1007/s10533-005-6395-1

    Article  Google Scholar 

  • Vejre H, Callesen I, Vesterdal L, Raulund-Rasmussen K (2003) Carbon and nitrogen in Danish forest soils—contents and distribution determined by soil order. Soil Sci Soc Am J 67:335–343

    Article  CAS  Google Scholar 

  • Vesterdal L, Schmidt IK, Callesen I, Nilsson LO, Gundersen P (2008) Carbon and nitrogen in forest floor and mineral soil under six common European tree species. For Ecol Manag 255:35–48. doi:10.1016/j.foreco.2007.08.015

    Article  Google Scholar 

  • Višnjić Ć, Solaković S, Mekić F, Balić B, Vojniković S, Dautbašić M, Gurda S, Ioras F, Ratnasingam J, Abrudan IV (2013) Comparison of structure, regeneration and dead wood in virgin forest remnant and managed forest on Grmeč Mountain in Western Bosnia. Plant Biosyst 147:913–922. doi:10.1080/11263504.2012.751064

    Article  Google Scholar 

  • Yang YH, Li P, Ding JZ, Zhao X, Ma WH, Ji CJ, Fang JY (2014) Increased topsoil carbon stock across China’s forests. Glob Change Biol 20:2687–2696. doi:10.1111/gcb.12536

    Article  Google Scholar 

  • Yuan ZQ, Gazol A, Lin F, Ye J, Shi S, Wang XG, Wang M, Hao ZQ (2013) Soil organic carbon in an old-growth temperate forest: spatial pattern, determinants and bias in its quantification. Geoderma 195:48–55. doi:10.1016/j.geoderma.2012.11.008

    Article  Google Scholar 

  • Zhou GY, Liu SG, Li Z, Zhang DQ, Tang XL, Zhou CY, Yan JH, Mo JM (2006) Old-growth forests can accumulate carbon in soils. Science 314:1417. doi:10.1126/science.1130168

    Article  CAS  PubMed  Google Scholar 

  • Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) Mixed effect models and extensions in ecology with R. Springer, Berlin

    Book  Google Scholar 

Download references

Acknowledgments

The original project was funded by two grants (F.M. Sabatini) from Sapienza, University of Rome (Grant No. C26N12ESSE, C26N14JZMA). We would like to thank Borja Jiménez-Alfaro, Emanuela Carli, Carmen Giancola, Eleonora Giarrizzo, Giorgia Martina, Manuel Palma, Danijela Stešević, and Antonio Zoccola for help during the fieldwork. We are grateful to Carlo Blasi, Renzo Motta and Matteo Garbarino for financial and logistic support. Further logistic assistance was provided by State Forestry Corps, ‘Abruzzo, Lazio and Molise National Park,’ ‘Gran Sasso and Monti della Laga National Park,’ ‘ASBUC Intermesoli,’ ‘Giardino della Flora Appenninica di Capracotta,’ and ‘Jardín Botánico Atlántico’ (Gijón, Spain).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Maria Sabatini.

Additional information

Communicated by Agustín Merino.

Francesco Maria Sabatini and Monica Zanini have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 35 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sabatini, F.M., Zanini, M., Dowgiallo, G. et al. Multiscale heterogeneity of topsoil properties in southern European old-growth forests. Eur J Forest Res 134, 911–925 (2015). https://doi.org/10.1007/s10342-015-0899-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10342-015-0899-6

Keywords

Navigation