Skip to main content

Advertisement

Log in

Nine-year changes in carbon dynamics following different intensities of harvesting in boreal aspen stands

  • Original Paper
  • Published:
European Journal of Forest Research Aims and scope Submit manuscript

Abstract

Mixedwood forests occupy a large extent of boreal regions and have the potential for sequestering large amounts of carbon. In the context of forest ecosystem management, partial cutting prescriptions are increasingly being applied to boreal mixedwood stands. Partial harvesting is expected to maintain carbon pools and dynamics within the limits of those of natural stands. Changes in live tree, deadwood (standing snags, downed logs), forest floor and mineral soil carbon pools were assessed over a 9-year period in a replicated large-scale experiment, which included unharvested controls, two variants of partial harvesting and clear-cuts. We also measured leaf litter and deadwood inputs and decay rates. Carbon flux through leaf litterfall recovered rapidly following partial harvesting. Carbon flux from live trees to deadwood pools was a dominant process in partially harvested stands where snags and downed log carbon pools remained similar to those of natural stands. Hence, the nature of litter inputs diverged strongly among clear-cut and partially harvested treatments. Leaf and wood decay rates were higher in the partial cuts and controls than in clear-cuts. No significant differences in forest floor and mineral soil carbon were observed 9 years after harvesting. Carbon sequestration in live tree biomass was the carbon pool that most strongly differentiated the treatments allowing partial harvesting to maintain forest stands as net carbon sinks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Amiro BD, Barr AG, Barr JG, Black TA, Bracho R, Brown M, Chen J, Clark KL, Davis KJ, Desai AR, Dore S, Engel V, Fuentes JD, Goldstein AH, Goulden ML, Kolb TE, Lavigne MB, Law BE, Margolis HA, Martin T, McCaughey JH, Misson L, Montes-Helu M, Noormets A, Randerson JT, Starr G, Xiao J (2010) Ecosystem carbon dioxide fluxes after disturbance in forests of North America. J Geophys Res Biogeosci 115:G00K02

  • Angers VA, Drapeau P, Bergeron Y (2010) Snag degradation pathways of four North American boreal tree species. For Ecol Manag 259:246–256

    Article  Google Scholar 

  • Angers VA, Bergeron Y, Drapeau P (2012a) Morphological attributes and snag classification of four North American boreal tree species: relationships with time since death and wood density. For Ecol Manag 263:138–147

    Article  Google Scholar 

  • Angers VA, Drapeau P, Bergeron Y (2012b) Mineralization rates and factors influencing snag decay in four North American boreal tree species. Can J For Res 42:157–166

    Article  CAS  Google Scholar 

  • Balboa-Murias MÁ, Rodríguez-Soalleiro R, Merino A, Álvarez-González JG (2006) Temporal variations and distribution of carbon stocks in aboveground biomass of radiata pine and maritime pine pure stands under different silvicultural alternatives. For Ecol Manag 237:29–38

    Article  Google Scholar 

  • Beaudet M, Harvey BD, Messier C, Coates KD, Poulin J, Kneeshaw DD, Brais S, Bergeron Y (2011) Managing understory light conditions in boreal mixedwoods through variation in the intensity and spatial pattern of harvest: a modelling approach. For Ecol Manag 261:84–94

    Article  Google Scholar 

  • Berg B (2000) Litter decomposition and organic matter turnover in northern forest soils. For Ecol Manag 133:13–22

    Article  Google Scholar 

  • Bergeron Y, Harvey B (1997) Basing silviculture on natural ecosystem dynamics: an approach applied to the southern boreal mixedwood forest of Quebec. For Ecol Manag 92:235–242

    Article  Google Scholar 

  • Bergeron Y, Bouchard A, Gangloff P (1983) La classification ecologique des milieux forestiers de la partie ouest des cantons d’Hebecourt et de Roquemaure, Abitibi, Quebec. Universite Laval, Quebec

    Google Scholar 

  • Bergeron Y, Chen HYH, Kenkel NC, Leduc AL, Macdonald SE (2014) Boreal mixedwood stand dynamics: ecological processes underlying multiple pathways. For Chron 90:202–213

    Article  Google Scholar 

  • Bond-Lamberty B, Wang C, Gower ST (2002) Aboveground and belowground biomass and sapwood area allometric equations for six boreal tree species of northern Manitoba. Can J For Res 32:1441–1450

    Article  Google Scholar 

  • Bose AK, Brais S, Harvey BD (2014a) Trembling aspen (Populus tremuloides Michx.) volume growth in the boreal mixedwood: effect of partial harvesting, tree social status, and neighborhood competition. For Ecol Manag 327:209–220

    Article  Google Scholar 

  • Bose AK, Harvey BD, Brais S (2014b) Sapling recruitment and mortality dynamics following partial harvesting in aspen-dominated mixedwoods in eastern Canada. For Ecol Manag 329:37–48

    Article  Google Scholar 

  • Bourgeois L, Messier C, Brais S (2004) Mountain maple and balsam fir early response to partial and clear-cut harvesting under aspen stands of northern Quebec. Can J For Res 34:2049–2059

    Article  Google Scholar 

  • Brais S, Camiré C (1992) Keys for soil moisture regime evaluation for northwestern Quebec. Can J For Res 22:718–724

    Article  Google Scholar 

  • Brais S, Harvey BD, Bergeron Y, Messier C, Greene D, Belleau A, Paré D (2004) Testing forest ecosystem management in boreal mixedwoods of northwestern Quebec: initial response of aspen stands to different levels of harvesting. Can J For Res 34:431–446

    Article  Google Scholar 

  • Brais S, Paré D, Lierman C (2006) Tree bole mineralization rates of four species of the Canadian eastern boreal forest: implications for nutrient dynamics following stand-replacing disturbances. Can J For Res 36:2331–2340

    Article  CAS  Google Scholar 

  • Brais S, Work TT, Robert É, O’Connor CD, Strukelj M, Bose AK, Celentano D, Harvey BD (2013) Ecosystem responses to partial harvesting in eastern boreal mixedwood stands. Forests 4:364–385

    Article  Google Scholar 

  • Brassard BW, Chen HYH, Bergeron Y, Paré D (2011) Coarse root biomass allometric equations for Abies balsamea, Picea mariana, Pinus banksiana, and Populus tremuloides in the boreal forest of Ontario, Canada. Biomass Bioenergy 35:4189–4196

    Article  Google Scholar 

  • Cavard X, Bergeron Y, Chen HYH, Paré D (2010) Mixed-species effect on tree aboveground carbon pools in the east-central boreal forests. Can J For Res 40:37–47

    Article  CAS  Google Scholar 

  • Chen HY, Popadiouk RV (2002) Dynamics of North American boreal mixedwoods. Environ Rev 10:137–166

    Article  Google Scholar 

  • Cotrufo MF, Wallenstein MD, Boot CM, Denef K, Paul E (2013) The microbial efficiency-matrix stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter? Glob Change Biol 19:988–995

    Article  Google Scholar 

  • Covington WW, Aber JD (1980) Leaf production during secondary succession in northern hardwoods. Ecology 61:200–204

    Article  Google Scholar 

  • Dai KO, Johnson CE, Driscoll CT (2001) Organic matter chemistry and dynamics in clear-cut and unmanaged hardwood forest ecosystems. Biogeochemistry 54:51–83

    Article  CAS  Google Scholar 

  • DesRochers A, Lieffers VJ (2001a) The coarse-root system of mature Populus tremuloides in declining stands in Alberta, Canada. J Veg Sci 12:355–360

  • DesRochers A, Lieffers VJ (2001b) Root biomass of regenerating aspen (Populus tremuloides) stands of different densities in Alberta. Can J For Res 31:1012–1018

    Article  Google Scholar 

  • Diochon A, Kellman L, Beltrami H (2009) Looking deeper: an investigation of soil carbon losses following harvesting from a managed northeastern red spruce (Picea rubens Sarg.) forest chronosequence. For Ecol Manag 257:413–420

    Article  Google Scholar 

  • Drever CR, Peterson G, Messier C, Bergeron Y, Flannigan M (2006) Can forest management based on natural disturbances maintain ecological resilience? Can J For Res 36:2285–2299

    Article  Google Scholar 

  • Environment Canada (2010) Canadian climate normals or averages 1971–2000. Available from http://climate.weatheroffice.gc.ca/climate_normals/index_e.html

  • Fierer N, Grandy AS, Six J, Paul EA (2009) Searching for unifying principles in soil ecology. Soil Biol Biochem 41:2249–2256

    Article  CAS  Google Scholar 

  • Fraver S, Wagner RG, Day M (2002) Dynamics of coarse woody debris following gap harvesting in the Acadian forest of central Maine, USA. Can J For Res 32:2094–2105

    Article  Google Scholar 

  • Fridman J, Walheim M (2000) Amount, structure, and dynamics of dead wood on managed forestland in Sweden. For Ecol Manag 131:23–36

    Article  Google Scholar 

  • Gauthier S, Vaillancourt M-A, Leduc A, de Grandpre L, Kneeshaw D, Morin H, Drapeau P, Bergeron Y (2008) Ecosystem management in the boreal forest. Presses de l’Université du Québec, Québec

    Google Scholar 

  • Hagemann U, Moroni MT, Makeschin F (2009) Deadwood abundance in Labrador high-boreal black spruce forests. Can J For Res 39:131–142

    Article  Google Scholar 

  • Harvey BD, Brais S (2007) Partial cutting as an analogue to stem exclusion and dieback in trembling aspen (Populus tremuloides) dominated boreal mixedwoods: implications for deadwood dynamics. Can J For Res 37:1525–1533

    Article  Google Scholar 

  • Hendrickson OQ (1988) Biomass and nutrients in regenerating woody vegetation following whole-tree and conventional harvest in a northern mixed forest. Can J For Res 18:1427–1436

    Article  Google Scholar 

  • Hoover C, Stout S (2007) The carbon consequences of thinning techniques: stand structure makes a difference. J For 105:266–270

    Google Scholar 

  • Hope GD, Prescott CE, Blevins LL (2003) Responses of available soil nitrogen and litter decomposition to openings of different sizes in dry interior Douglas-fir forests in British Columbia. For Ecol Manag 186:33–46

    Article  Google Scholar 

  • Hughes JW, Fahey TJ (1994) Litterfall dynamics and ecosystem recovery during forest development. For Ecol Manag 63:181–198

    Article  Google Scholar 

  • Husch B, Beers TW, Kershaw JAJ (2003) Forest mensuration. Wiley, Hoboken

    Google Scholar 

  • Jandl R, Lindner M, Vesterdal L, Bauwens B, Baritz R, Hagedorn F, Johnson DW, Minkkinen K, Byrne KA (2007) How strongly can forest management influence soil carbon sequestration? Geoderma 137:253–268

    Article  CAS  Google Scholar 

  • Kalbitz K, Glaser B, Bol R (2004) Clear-cutting of a Norway spruce stand: implications for controls on the dynamics of dissolved organic matter in the forest floor. Eur J Soil Sci 55:401–413

    Article  Google Scholar 

  • Kebli H, Brais S, Kernaghan G, Drouin P (2012) Impact of harvesting intensity on wood-inhabiting fungi in boreal aspen forests of Eastern Canada. For Ecol Manag 279:45–54

    Article  Google Scholar 

  • Kranabetter JM, Coates KD (2004) Ten-year postharvest effects of silviculture systems on soil-resource availability and conifer nutrition in a northern temperate forest. Can J For Res 34:800–809

    Article  Google Scholar 

  • Laganière J, Paré D, Bergeron Y, Chen HH, Brassard B, Cavard X (2013) Stability of soil carbon stocks varies with forest composition in the Canadian boreal biome. Ecosystems 16:852–865

    Article  Google Scholar 

  • Lambert M-C, Ung C-H, Raulier F (2005) Canadian national tree aboveground biomass equations. Can J For Res 35:1996–2018

    Article  Google Scholar 

  • Lamlom SH, Savidge RA (2003) A reassessment of carbon content in wood: variation within and between 41 North American species. Biomass Bioenergy 25:381–388

    Article  CAS  Google Scholar 

  • Law BE, Sun OJ, Campbell J, Van Tuyl S, Thornton PE (2003) Changes in carbon storage and fluxes in a chronosequence of ponderosa pine. Glob Change Biol 9:510–524

    Article  Google Scholar 

  • Lee J, Morrison IK, Leblanc J-D, Dumas MT, Cameron DA (2002) Carbon sequestration in trees and regrowth vegetation as affected by clearcut and partial cut harvesting in a second-growth boreal mixedwood. For Ecol Manag 169:83–101

    Article  Google Scholar 

  • Lieffers VJ, Beck JA Jr (1994) A semi-natural approach to mixedwood management in the prairie provinces. For Chron 70:260–264

    Article  Google Scholar 

  • Lieffers VJ, Pinno BD, Stadt KJ (2002) Light dynamics and free-to-grow standards in aspen-dominated mixedwood forests. For Chron 78:137–145

    Article  Google Scholar 

  • Lorenz K, Lal R, Preston CM, Nierop KGJ (2007) Strengthening the soil organic carbon pool by increasing contributions from recalcitrant aliphatic bio(macro)molecules. Geoderma 142:1–10

    Article  CAS  Google Scholar 

  • Martin JL, Gower ST, Plaut J, Holmes B (2005) Carbon pools in a boreal mixedwood logging chronosequence. Glob Change Biol 11:1883–1894

    Google Scholar 

  • Mattson KG, Swank WT, Waide JB (1987) Decomposition of woody debris in a regenerating, clear-cut forest in the Southern Appalachians. Can J For Res 17:712–721

  • Moroni MT (2006) Disturbance history affects dead wood abundance in Newfoundland boreal forests. Can J For Res 36:3194–3208

    Article  Google Scholar 

  • Nave LE, Vance ED, Swanston CW, Curtis PS (2010) Harvest impacts on soil carbon storage in temperate forests. For Ecol Manag 259:857–866

    Article  Google Scholar 

  • Paré D, Bergeron Y (1995) Above-ground biomass accumulation along a 230-year chronosequence in the southern portion of the Canadian boreal forest. J Ecol 83:1001–1007

    Article  Google Scholar 

  • Parkinson JA, Allen SE (1975) A wet oxidation procedure suitable for the determination of nitrogen and mineral nutrients in biological material. Commun Soil Sci Plant Anal 6:1–11

    Article  CAS  Google Scholar 

  • Pedlar JH, Pearce JL, Venier LA, McKenney DW (2002) Coarse woody debris in relation to disturbance and forest type in boreal Canada. For Ecol Manag 158:189–194

    Article  Google Scholar 

  • Perera AH, Yemshanov D, Schnekenburger F, Baldwin DJB, Boychuk D, Weaver K (2004) Spatial simulation of broad-scale fire regimes as a tool for emulating natural forest landscape disturbance. In: Perera AH, Buse LJ, Weber MG (eds) Emulating natural forest landscape disturbances: concepts and applications. Columbia University Press, New York, pp 112–122

    Google Scholar 

  • Piirainen S, Finér L, Mannerkoski H, Starr M (2002) Effects of forest clear-cutting on the carbon and nitrogen fluxes through podzolic soil horizons. Plant Soil 239:301–311

    Article  CAS  Google Scholar 

  • Pinheiro JC, Bates DM (2000) Mixed-effects models in S and S-PLUS. Springer, New York

    Book  Google Scholar 

  • Poulin J, Messier C, Papaik M, Beaudet M, Coates DK (2008) Rapport de paramétrisation du modèle de simulation de la dynamique forestière SORTIE-ND pour la forêt boréale et sub-boréale de l’ouest du Québec. In Université du Québec à Montréal, Centre d’étude de la forêt, p 59

  • Powers M, Kolka R, Palik B, McDonald R, Jurgensen M (2011) Long-term management impacts on carbon storage in Lake States forests. For Ecol Manag 262:424–431

    Article  Google Scholar 

  • Prescott CE (1997) Effects of clearcutting and alternative silvicultural systems on rates of decomposition and nitrogen mineralization in a coastal montane coniferous forest. For Ecol Manag 95:253–260

    Article  Google Scholar 

  • Prévost M, Pothier D (2003) Partial cuts in a trembling aspen conifer stand: effects on microenvironmental conditions and regeneration dynamics. Can J For Res 33:1–15

    Article  Google Scholar 

  • R Development Core Team (2012) R: a language and environment for statistical computing, version 2.15.2. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Rouvinen S, Kuuluvainen T, Karjalainen L (2002) Coarse woody debris in old Pinus sylvestris dominated forests along a geographic and human impact gradient in boreal Fennoscandia. Can J For Res 32:2184–2200

    Article  Google Scholar 

  • Schwenk WS, Donovan TM, Keeton WS, Nunery JS (2012) Carbon storage, timber production, and biodiversity: comparing ecosystem services with multi-criteria decision analysis. Ecol Appl 22:1612–1627

    Article  PubMed  Google Scholar 

  • Seedre M, Shrestha BM, Chen HYH, Colombo S, Jõgiste K (2011) Carbon dynamics of North American boreal forest after stand replacing wildfire and clearcut logging. J For Res 16:168–183

    Article  CAS  Google Scholar 

  • Shorohova E, Kapitsa E, Vanha-Majamaa I (2008) Decomposition of stumps 10 years after partial and complete harvesting in a southern boreal forest in Finland. Can J For Res 38:2414–2421

    Article  CAS  Google Scholar 

  • Siitonen J (2001) Forest management, coarse woody debris and saproxylic organisms: Fennoscandian boreal forests as an example. Ecol Bull 49:11–41

    Google Scholar 

  • Sippola A-L, Similä M, Mönkkönen M, Jokimäki J (2004) Diversity of polyporous fungi (Polyporaceae) in northern boreal forests: effects of forest site type and logging intensity. Scand J For Res 19:152–163

    Article  Google Scholar 

  • Soil Classification Working Group (1998) The Canadian system of soil classification. National Research Council of Canada, Agriculture and Agri-Food Canada, Ottawa, Canada

  • Strukelj M, Brais S, Quideau SA, Oh S-W (2012) Chemical transformations of deadwood and foliar litter of mixed boreal species during decomposition. Can J For Res 42:772–788

    Article  CAS  Google Scholar 

  • Strukelj M, Brais S, Quideau SA, Angers VA, Kebli H, Drapeau P, Oh S-W (2013) Chemical transformations in downed logs and snags of mixed boreal species during decomposition. Can J For Res 43:785–798

    Article  CAS  Google Scholar 

  • Van Wagner CE (1982) Practical aspects of the line intersect method. Petawawa National Forestry Institute, Canadian Forestry Service, Chalk River

  • Veillette J, Bergeron Y, Gaudreau L, Miron F, Drainville G (2000) Abitibi-Témiscamingue: De l’emprise des glaces à un foisonnement d’eau et de vie: 10000 ans d’histoire. Éditions MultiMondes, Sainte-Foy

    Google Scholar 

  • Wei X, Kimmins JP, Peel K, Steen O (1997) Mass and nutrients in woody debris in harvested and wildfire-killed lodgepole pine forests in the central interior of British Columbia. Can J For Res 27:148–155

    Article  Google Scholar 

  • Wickings K, Grandy AS, Reed SC, Cleveland CC (2012) The origin of litter chemical complexity during decomposition. Ecol Lett 15:1180–1188

    Article  PubMed  Google Scholar 

  • Work TT, Shorthouse DP, Spence JR, Volney WJA, Langor D (2004) Stand composition and structure of the boreal mixedwood and epigaeic arthropods of the Ecosystem Management Emulating Natural Disturbance (EMEND) landbase in northwestern Alberta. Can J For Res 34:417–430

    Article  Google Scholar 

  • Yanai RD, Currie WS, Goodale CL (2003) Soil carbon dynamics after forest harvest: an ecosystem paradigm reconsidered. Ecosystems 6:197–212

  • Zhou D, Zhao SQ, Liu S, Oeding J (2013) A meta-analysis on the impacts of partial cutting on forest structure and carbon storage. Biogeosciences 10:3691–3703

    Article  Google Scholar 

Download references

Acknowledgments

We thank the two reviewers who provided helpful comments and suggestions to improve the original manuscript. We are also grateful to Dr. Marc Mazerolle for statistical support, Josée Frenette, Ariane Béchard, Mylène Bélanger, Alfred Coulomb, Mario Major and Dr. Hedi Kebli for field assistance, and Dr. William F.J. Parsons for English revision. This study was supported by the Fonds Québécois de Recherche sur la Nature et les Technologies (FQRNT, Grant 121414), by the Natural Sciences and Engineering Research Council of Canada (NSERC, Grant 217118-02) by the Lake Duparquet Research and Teaching Forest (Ph.D. scholarship) and by Jean-Jacques Cossette (Ph.D. Scholarship).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuella Strukelj.

Additional information

Communicated by Lluís Coll.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Strukelj, M., Brais, S. & Paré, D. Nine-year changes in carbon dynamics following different intensities of harvesting in boreal aspen stands. Eur J Forest Res 134, 737–754 (2015). https://doi.org/10.1007/s10342-015-0880-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10342-015-0880-4

Keywords

Navigation