Advertisement

European Journal of Forest Research

, Volume 133, Issue 3, pp 511–523 | Cite as

Temperate forest development during secondary succession: effects of soil, dominant species and management

  • Arun K. BoseEmail author
  • Mart-Jan Schelhaas
  • Marc J. Mazerolle
  • Frans Bongers
Original Paper

Abstract

With the increase in abandoned agricultural lands in Western Europe, knowledge on the successional pathways of newly developing forests becomes urgent. We evaluated the effect of time, soil type and dominant species type (shade tolerant or intolerant) on the development during succession of three stand attributes: above-ground biomass, stand height (HT) and stem density (SD). Additionally, we compared above-ground biomass (AGB) in natural and planted forests, using ten chronosequences (8 from the literature and 2 from this study). Both AGB and HT increased over time, whereas SD decreased. HT, SD and AGB differed among species types. For example, birch had greater HT than alder, willow and ash at a similar age and had higher SD than pine and oak at a similar age. However, birch showed lower AGB than pine. HT and AGB differed among soil types. They were higher in rich soil than in poor soils. Comparative analysis between chronosequences showed an effect of the regeneration method (natural regeneration vs plantation) on above-ground biomass. Planted sites had higher AGB than natural regeneration. Time, soil type, species and regeneration method influenced the mechanism of stand responses during secondary succession. These characteristics could be used to clarify the heterogeneity and potential productivity of such spontaneously growing temperate forest ecosystems.

Keywords

Spontaneously growing forest Secondary succession Forest rejuvenation Above-ground biomass Stand height Stem density 

Notes

Acknowledgments

Thanks to Dr. L. Vesterdal and his colleagues for helping us with information and data on his paper Vesterdal et al. (2007). We are also grateful for Dr. M. D. Powers and USDA forest service Northern Research Station for helping us with information and data on article Powers et al. (2012). A. K. Bose was a recipient of an ERASMUS MUNDUS master scholarship provided by the University of Eastern Finland and Wageningen University, the Netherlands.

Conflict of interest

We declare that we have no conflict of interest.

References

  1. Alberti G, Peressotti A, Piussi P, Zerbi G (2008) Forest ecosystem carbon accumulation during a secondary succession in the Eastern Prealps of Italy. Forestry 81(1):1–11CrossRefGoogle Scholar
  2. Bartelink H (1997) Allometric relationships for biomass and leaf area of beech (Fagus sylvatica L). Ann For Sci 54(1):39–50CrossRefGoogle Scholar
  3. Bauhus J, Paré D, Côté L (1998) Effects of tree species, stand age and soil type on soil microbial biomass and its activity in a southern boreal forest. Soil Biol Biochem 30(8–9):1077–1089CrossRefGoogle Scholar
  4. Berendse F (1990) Organic matter accumulation and nitrogen mineralization during secondary succession in heathland ecosystems. J Ecol 78(2):413–427CrossRefGoogle Scholar
  5. Berendse F, Lammerts EJ, Olff H (1998) Soil organic matter accumulation and its implications for nitrogen mineralization and plant species composition during succession in coastal dune slacks. Plant Ecol 137(1):71–78CrossRefGoogle Scholar
  6. Bungart R, Hüttl RF (2001) Production of biomass for energy in post-mining landscapes and nutrient dynamics. Biomass Bioenergy 20(3):181–187CrossRefGoogle Scholar
  7. Burnham KP, Anderson DR (2002) Model selection and multi-model inference: a practical information-theoretic approach, 2nd edn. Springer, New YorkGoogle Scholar
  8. CBS PBL, Wageningen UR (2013) Emissies broeikasgassen, 1990–2012 (indicator 0165, versie 23, 9 September 2013). wwwcompendiumvoordeleefomgevingnl CBS, Den Haag; Planbureau voor de Leefomgeving, Den Haag/Bilthoven en Wageningen UR, WageningenGoogle Scholar
  9. Cramer VA, Hobbs RJ, Standish RJ (2008) What’s new about old fields? Land abandonment and ecosystem assembly. Trends Ecol Evol 23(2):104–112PubMedCrossRefGoogle Scholar
  10. Daamen WP, Dirkse GM (2009) 24.1 Development of the Netherlands’ National Forest Inventory. National Forest Inventories: Pathways for Common Reporting, 383pGoogle Scholar
  11. De Kovel CGF, Van Mierlo AJEM, Wilms YJO, Berendse F (2000) Carbon and nitrogen in soil and vegetation at sites differing in successional age. Plant Ecol 149:43–50CrossRefGoogle Scholar
  12. Del Río M, Montero G, Bravo F (2001) Analysis of diameter–density relationships and self-thinning in non-thinned even-aged Scots pine stands. For Ecol Manag 142(1–3):79–87Google Scholar
  13. Dirkse GM, Daamen WP, Schoonderwoerd H, Japink M, Van Jole M, Van Moorsel R, Schnitger P, Stouthamer WJ, Vocks M (2007) Meetnet Functievervulling bos 2001–2005. Vijfde Nederlandse Bosstatistiek. Ede, Directie Kennis, Ministerie van Landbouw, Natuur en VoedselkwaliteitGoogle Scholar
  14. Elgersma AM (1998) Primary forest succession on poor sandy soils as related to site factors. Biodivers Conserv 7(2):193–206CrossRefGoogle Scholar
  15. Escudero A, JMd Arco, Sanz IC, Ayala J (1992) Effects of leaf longevity and retranslocation efficiency on the retention time of nutrients in the leaf biomass of different woody species. Oecologia 90(1):80–87CrossRefGoogle Scholar
  16. Europe F, UNECE F (2011) State of Europe's forests 2011. Status and trends in sustainable forest management in Europe. http://www.uneceorg/forests/fr/outputs/soef2011.html, p 978–982
  17. Fanta J (1986) Forest site as a framework for forest succession. In: Fanta J (ed.), Forest dynamics research in Western and Central Europe. Wageningen Univ Pap: 58–65Google Scholar
  18. Ferm A (1993) Birch production and utilization for energy. Biomass Bioenergy 4(6):391–404CrossRefGoogle Scholar
  19. Fuchs R, Herold M, Verburg PH, Clevers JGPW (2013) A high-resolution and harmonized model approach for reconstructing and analysing historic land changes in Europe. Biogeosciences 10(3):1543–1559CrossRefGoogle Scholar
  20. Gower ST, McMurtrie RE, Murty D (1996) Aboveground net primary production decline with stand age: potential causes. Trends Ecol Evol 11(9):378–382PubMedCrossRefGoogle Scholar
  21. Grashof-Bokdam C (1997) Forest species in an agricultural landscape in the Netherlands: Effects of habitat fragmentation. J Veg Sci 8(1):21–28CrossRefGoogle Scholar
  22. Grashof-Bokdam C, Geertsema W (1998) The effect of isolation and history on colonization patterns of plant species in secondary woodland. J Biogeogr 25(5):837–846CrossRefGoogle Scholar
  23. Grime JP (2002) Plant strategies, vegetation processes, and ecosystem properties, 2nd edn. John Wiley & Sons, West SussexGoogle Scholar
  24. Guo LB, Gifford RM (2002) Soil carbon stocks and land use change: a meta analysis. Glob Change Biol 8(4):345–360CrossRefGoogle Scholar
  25. Hamburg SP, Zamolodchikov DG, Korovin GN, Nefedjev VV, Utkin AI, Gulbe JI, Gulbe TA (1997) Estimating the carbon content of Russian forests; a comparison of phytomass/volume and allometric projections. Mitig Adapt Strat Glob Change 2(2–3):247–265CrossRefGoogle Scholar
  26. Harmon ME, Fasth B, Woodall CW, Sexton J (2013) Carbon concentration of standing and downed woody detritus: Effects of tree taxa, decay class, position, and tissue type. For Ecol Manag 291:259–267CrossRefGoogle Scholar
  27. Hees AFM (2001) Biomass development in unmanaged forests Nederlands. Bosbouwtijdschrift 73(5):2–5Google Scholar
  28. Hermy M, Verheyen K (2007) Legacies of the past in the present-day forest biodiversity: a review of past land-use effects on forest plant species composition and diversity. Ecol Res 22(3):361–371CrossRefGoogle Scholar
  29. Hochbichler E (2002) Vorläufige ergebnisse von biomasseninventuren in Buchen- und Mittelwaldbeständen. In: Dietrich H-P, Raspe S, Preushsler T (eds) Inventur von Biomasse- und Nährstoffvorräten in Waldbeständen. Forstliche Forschungsberichte, Heft, 186, LWF, München, Germany, pp 37–46Google Scholar
  30. Holtsmark B (2012) Harvesting in boreal forests and the biofuel carbon debt. Clim Change 112(2):415–428CrossRefGoogle Scholar
  31. Hooker TD, Compton JE (2003) Forest ecosystem carbon and nitrogen accumulation during the first century after agricultural abandonment. Ecol Appl 13(2):299–313CrossRefGoogle Scholar
  32. Hynynen J (1993) Self-thinning models for even-aged stands of Pinus sylvestris, Picea abies and Betula pendula. Scand J For Res 8(1–4):326–336CrossRefGoogle Scholar
  33. Jacob M, Leuschner C, Thomas FM (2010) Productivity of temperate broad-leaved forest stands differing in tree species diversity. Ann For Sci 67(5):503CrossRefGoogle Scholar
  34. Jandl R, Lindner M, Vesterdal L, Bauwens B, Baritz R, Hagedorn F, Johnson DW, Minkkinen K, Byrne KA (2007) How strongly can forest management influence soil carbon sequestration? Geoderma 137(3–4):253–268CrossRefGoogle Scholar
  35. Johansson T (1999a) Biomass equations for determining fractions of pendula and pubescent birches growing on abandoned farmland and some practical implications. Biomass Bioenergy 16(3):223–238CrossRefGoogle Scholar
  36. Johansson T (1999b) Dry matter amounts and increment in 21 to 91-year-old common alder and grey alder and some practical implications. Can J For Res 29(11):1679–1690CrossRefGoogle Scholar
  37. Kardol P, Martijn Bezemer T, Van Der Putten WH (2006) Temporal variation in plant–soil feedback controls succession. Ecol Lett 9(9):1080–1088PubMedCrossRefGoogle Scholar
  38. King D (2011) Size-related changes in tree proportions and their potential influence on the course of height growth. In: Meinzer FC, Lachenbruch B, Dawson TE (eds) Size- and age-related changes in tree structure and function, vol 4., Tree PhysiologySpringer, Netherlands, pp 165–191CrossRefGoogle Scholar
  39. Kint V (2005) Structural development in ageing temperate Scots pine stands. For Ecol Manag 214(1–3):237–250CrossRefGoogle Scholar
  40. Kint V, Mohren GMJ, Geudens G, de Wulf R, Lust N (2004) Pathways of stand development in ageing Pinus sylvestris forests. J Veg Sci 15(4):549–560Google Scholar
  41. Kint V, Lasch P, Lindner M, Muys B (2009) Multipurpose conversion management of Scots pine towards mixed oak–birch stands—a long-term simulation approach. For Ecol Manag 257(1):199–214CrossRefGoogle Scholar
  42. Kira T, Shidei T (1967) Primary production and turnover of organic matter in different forest ecosystems of the Western Pacific. Jpn J Ecol 17(2):70–87Google Scholar
  43. KNMI (Koninklijk Nederlands Meteorologisch Instituut) (2008) De toestand van het klimaat in Nederland, De Bilt KNMI 48pGoogle Scholar
  44. Koch GW, Sillett SC, Jennings GM, Davis SD (2004) The limits to tree height. Nature 428(6985):851–854PubMedCrossRefGoogle Scholar
  45. Kuramae EE, Gamper HA, Yergeau E, Piceno YM, Brodie EL, DeSantis TZ, Andersen GL, van Veen JA, Kowalchuk GA (2010) Microbial secondary succession in a chronosequence of chalk grasslands. ISME J 4(5):711–715PubMedCrossRefGoogle Scholar
  46. Long JN, Turner J (1975) Aboveground biomass of understorey and overstorey in an age sequence of four Douglas-fir stands. J Appl Ecol 12(1):179–188CrossRefGoogle Scholar
  47. Luyssaert S, Schulze E-D, Börner A, Knohl A, Hessenmöller D, Law BE, Ciais P, Grace J (2008) Old-growth forests as global carbon sinks. Nature 455(7210):213–215PubMedCrossRefGoogle Scholar
  48. Martínez-Vilalta J, Vanderklein D, Mencuccini M (2007) Tree height and age-related decline in growth in Scots pine (Pinus sylvestris L.). Oecologia 150(4):529–544PubMedCrossRefGoogle Scholar
  49. Mazerolle MJ (2006) Improving data analysis in herpetology: using Akaike’s Information Criterion (AIC) to assess the strength of biological hypotheses. Amphibia-Reptilia 27(2):169–180CrossRefGoogle Scholar
  50. Mazerolle MJ (2011) AICcmodavg: model selection and multimodel inference based on (Q)AIC(c). R package version 117. http://cran.r-project.org/web/packages/AICcmodavg/index.html
  51. Mitchell SR, Harmon ME, O’Connell KEB (2012) Carbon debt and carbon sequestration parity in forest bioenergy production. GCB Bioenergy 4(6):818–827CrossRefGoogle Scholar
  52. Moonen A-C, Bàrberi P (2008) Functional biodiversity: an agroecosystem approach. Agric Ecosyst Environ 127(1–2):7–21CrossRefGoogle Scholar
  53. Muukkonen P (2007) Generalized allometric volume and biomass equations for some tree species in Europe. Eur J For Res 126(2):157–166CrossRefGoogle Scholar
  54. Nabuurs G, Mohren G (1993) Carbon in Dutch forest ecosystems. NJAS Wagening J Life Sci 41(4):309–326Google Scholar
  55. Nabuurs G-J, Mohren F, Dolman H (2000) Monitoring and reporting carbon stocks and fluxes in Dutch forests. Biotechnol Agron Soc Environ 4(4):308–310Google Scholar
  56. Nabuurs GJ, Wyngaert IJJvd, Daamen WD, Helmink ATF, Groot WJMd, Knol WC, Kramer H, Kuikman PJ (2005) National system of greenhouse gas reporting for forest and nature areas under UNFCCC in the Netherlands. Alterra, WageningenGoogle Scholar
  57. Nunes L, Lopes D, Castro Rego F, Gower ST (2013) Aboveground biomass and net primary production of pine, oak and mixed pine–oak forests on the Vila Real district, Portugal. For Ecol Manag 305:38–47CrossRefGoogle Scholar
  58. Oren R, Ellsworth DS, Johnsen KH, Phillips N, Ewers BE, Maier C, Schäfer KV, McCarthy H, Hendrey G, McNulty SG (2001) Soil fertility limits carbon sequestration by forest ecosystems in a CO2-enriched atmosphere. Nature 411(6836):469–472PubMedCrossRefGoogle Scholar
  59. Øyen B-H, Blom HH, Gjerde I, Myking T, Sætersdal M, Thunes KH (2006) Ecology, history and silviculture of Scots pine (Pinus sylvestris L.) in western Norway: a literature review. Forestry 79(3):319–329CrossRefGoogle Scholar
  60. Pastor J, Post WM (1986) Influence of climate, soil moisture, and succession on forest carbon and nitrogen cycles. Biogeochemistry 2(1):3–27CrossRefGoogle Scholar
  61. Pinheiro J, Bates D, DebRoy S, Sarkar D (2011) nlme: linear and nonlinear mixed effects models. R package version 31–98. http://cran.r-project.org/web/packages/nlme/index.html. Accessed December 2011
  62. Powers MD, Kolka RK, Bradford JB, Palik BJ, Fraver SA, Jurgensen MF (2012) Carbon stocks across a chronosequence of thinned and unmanaged red pine (Pinus resinosa) stands. Ecol Appl 22(4):1297–1307PubMedCrossRefGoogle Scholar
  63. Prach K (1989) Primary forest succession in sand dune areas, The Veluwe, Central Netherlands. Dorschkamp report no 544 Wageningen: DorschkamppublikatiesGoogle Scholar
  64. Pregitzer KS, Euskirchen ES (2004) Carbon cycling and storage in world forests: biome patterns related to forest age. Glob Change Biol 10(12):2052–2077CrossRefGoogle Scholar
  65. Prévosto B, Kuiters L, Bernhardt-Römermann M, Dölle M, Schmidt W, Hoffmann M, Uytvanck J, Bohner A, Kreiner D, Stadler J, Klotz S, Brandl R (2011) Impacts of land abandonment on vegetation: successional pathways in European habitats. Folia Geobot 46(4):303–325CrossRefGoogle Scholar
  66. R-Development-Core-Team (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3- 900051-07-0, Available from, http://www.R-project.org/. Accessed December 2011
  67. Ryan MG, Yoder BJ (1997) Hydraulic limits to tree height and tree growth. Bioscience 47(4):235–242CrossRefGoogle Scholar
  68. Ryan MG, Binkley D, Fownes JH (1997) Age-related decline in forest productivity: pattern and process. In: Begon M, Fitter AH (eds) Advances in Ecological Research, vol 27. Academic Press, pp 213–262Google Scholar
  69. Schulp CJE, Nabuurs G-J, Verburg PH (2008) Future carbon sequestration in Europe: effects of land use change. Agric Ecosyst Environ 127(3–4):251–264CrossRefGoogle Scholar
  70. Stoate C, Báldi A, Beja P, Boatman ND, Herzon I, van Doorn A, de Snoo GR, Rakosy L, Ramwell C (2009) Ecological impacts of early 21st century agricultural change in Europe: a review. J Environ Manag 91(1):22–46CrossRefGoogle Scholar
  71. Vande Walle I, Van Camp N, Van de Casteele L, Verheyen K, Lemeur R (2007) Short-rotation forestry of birch, maple, poplar and willow in Flanders (Belgium) I: biomass production after 4 years of tree growth. Biomass Bioenergy 31(5):267–275CrossRefGoogle Scholar
  72. Vesterdal L, Ritter E, Gundersen P (2002) Change in soil organic carbon following afforestation of former arable land. For Ecol Manag 169(1–2):137–147CrossRefGoogle Scholar
  73. Vesterdal L, Rosenqvist L, Van der Salm C, Hansen K, Groenenberg B-J, Johansson M-B (2007) Carbon sequestration in soil and biomass following afforestation: experiences from oak and Norway spruce chronosequences in Denmark, Sweden and the Netherlands. In: Heil GW, Muys B, Hansen K (eds) Environmental effects of afforestation in North-Western Europe. Springer, pp 19–51Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Arun K. Bose
    • 1
    • 3
    Email author
  • Mart-Jan Schelhaas
    • 2
  • Marc J. Mazerolle
    • 3
  • Frans Bongers
    • 1
  1. 1.Forest Ecology and Forest Management GroupWageningen University and Research CenterWageningenThe Netherlands
  2. 2.Team Vegetation, Forest and Landscape Ecology, AlterraWageningen University and Research CenterWageningenThe Netherlands
  3. 3.Institut de recherche sur les forêtsUniversité du Québec en Abitibi-TémiscamingueRouyn-NorandaCanada

Personalised recommendations