Abstract
The purpose of this study was to find the ecological factors that most affect height growth of Norway spruce (Picea abies Karst.) over the Western Carpathians. The specific aim was to find climate and soil parameters which are influenced by climate change and can thus be used to make a forest growth model more sensitive to climate. From the results, a regression model was built which can predict top height growth of Norway spruce from ecological parameters. Data collected on 201 plots established within National Forest Inventory of Slovakia were used. The plots selected for the study were distributed almost over the whole Western Carpathians. Mean height of the 20 % largest spruce trees was used as dependent variable. From all investigated ecological factors, the growing season length explained as the number of days with temperature over 5 °C, the carbon-to-nitrogen ratio and soil acidity were shown to have the major impact on top height growth of Norway spruce. Finally, 76 % of total variability in top height was explained by the mentioned site variables. To obtain a user-friendly output, a probability matrix was developed showing the likelihood of a discrete site index to occur on different combinations of site factors. Moreover, raster maps showing the site index of spruce and its probability distribution were developed.








Similar content being viewed by others
References
Agbu PA, Olsen KR (1990) Spatial variability of soil properties in selected Illinois Mollisols. Soil Sci 150:777–785
Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19(6):716–723
Barnes VB, Zak RD, Denton RS, Spurr HS (1998) Forest ecology, 4th edn. Wiley, USA 774 pp
Bergès L, Gégout J-C, Franc A (2006) Can understory vegetation accurately predict site index? A comparative study using floristic and abiotic indices in sessile oak (Quercus petraea Liebl.) stands in northern France. Ann Forest Sci 63:31–42
Bošeľa M (2011) Veľkoplošná variabilita a vzájomné vzťahy stanovištných charakteristík lesov Slovenska. (Dissertation thesis). National Forest Centre, Zvolen, 100 p
Bruchwald A, Dudek A, Michalak K, Rymer-Dudzinska T, Wroblewski L, Zasada M (1999) A growth model for Norway spruce stands. Sylwan 1:19–31 (in Polish)
Cambardella CA, Moorman TB, Novak JM, Parkin TB, Karlen DL, Turco RF, Konopka AE (1994) Field-scale variability of soil properties in Central Iowa soils. Soil Sci Soc Am J 58:1501–1511
Corona P, Scotti R, Tarchiani N (1998) Relationship between environmental factors and site index in Douglas-Fir plantations in central Italy. Forest Ecol Manag 110:195–207
Curt Th, Bouchaud M, Agrech G (2001) Predicting site index of Douglas-Fir plantations from ecological variables in the Massif Central area of France. Forest Ecol Manag 149:61–74
Davis LS, Johnson KN (1987) Forest management, 3rd edn. McGraw-Hill, New York
Draper NR, Smith H (1981) Applied regression analysis, 2nd edn. John Wiley & Sons Inc, New York
Efron B (1982) The jackknife, the bootstrap and other resampling methods. Society for Industrial and Applied Mathematics, CBMS-NSF Monograph 38, Philadelphia
Elfving B, Kiviste A (1997) Construction of site index equations for Pinus sylvestris L. using permanent plot data in Sweden. Forest Ecol Manag 98:125–134
English M, Karrer G, Mutsch F (1991) Österreichische Waldbodenzustandsinventur. Teil I. Methodische Grundlagen. FBVA-Bericht 168/I, pp 5–22
Ercanli I, Gunlu A, Altun L, Baskent EZ (2008) Relationship between site index of oriental spruce [Picea orientalis (L.) Link] and ecological variables in Mac¸ka Turkey. Scand J Forest Res 23:319–329
Evert F (1964) Components of stand volume and its increment. J Forest 62:810–813
Fabrika M (2004). Ekologická bonitácia v modeli rastu lesa Sibyla na podklade klimatických a pôdnych charakteristík. In: Climate change - weather extremes organisms and ecosystems : international bioclimatological workshop 2004. - Bratislava : Slovak bioclimatological society SAS
Fischer R, Beck W, Calatayud V, Cools N, De Vos B, Dobbertin M, Fleck S, Giordani P, Granke O, Kindermann G, Lorenz M, Meesenburg H, Meining S, Nagel H-D, Neumann M, Scheuschner T, Stofer S (2011) The condition of forests in Europe, 2011 executive report. ICP Forests and European Commission, Hamburg and Brussels 21
Fontes L, Tomé M, Thompson F, Yeomans A, Luis JS, Savill P (2003) Modelling the Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) site index from site factors in Portugal. Forestry 76(5):491–505
Frich P, Alexander LV, Della-Marta P, Gleason B, Haylock M, Klein Tank AMG, Peterson T (2002) Observed coherent changes in climatic extremes during the second half of the 20th century. Climate Res 19:193–212
Fürst A (2008) 10th needle/leaf interlaboratory comparison test 2007/2008. Forest foliar coordinating centre/BFW, Vienna 110
Gömöry D, Longauer R, Hlásny T, Pacalaj M, Strmeň S, Krajmerová D (2011) Adaptation to common optimum in different populations of Norway spruce (Picea abies Karst.). Eur J Forest Res 131 (2):401–411
Gömöryová E, Gömöry D (1995) Relationships between environmental factors and height growth and yield of Norway spruce stands: a factor-analytic approach. Forestry 68(2):145–152
Hägglund B, Lundmark JE (1977) Site index estimation by means of site properties Scots pine and Norway spruce in Sweden. Studia Forestalia Suecica 138:5–38
Hairston AB, Grigal DF (1991) Topographic influences on soil and trees within single mapping units on a sandy outwash landscape. Forest Ecol Manag 43:35–45
Halaj J (1978) Výškový rast a štruktúra porastov. Bratislava, Veda
Halaj J, Petráš R (1998) Rastové tabuľky hlavných drevín. Slovak Academic Press, Bratislava
Halaj J, Grék J, Pánek F, Petráš R, Řehák J (1987) Rastové tabuľky hlavných drevín ČSSR. Bratislava, Príroda
Hiley WE (1959) Two-storied high forest. Forestry 32(2):113–116
Hlásny T (2007) Modelling selected climate parameters in the ISATIS environment. In: Ostrava GIS (ed) 2007 [CD]. TU-VŠB, Ostrava
Hlásny T, Barcza Z, Fabrika M, Balázs B et al (2011) Climate change impacts on growth and carbon balance of forests in Central Europe. Clim Res 47:219–236
Hók J, Kahan Š, Aubrecht R (2001) Geológia Slovenska. Univerzita Komenského, Bratislava
Hunter IR, Gibson AR (1984) Predicting Pinus radiate site index from environmental variables. NZ J Forest Sci 14:53–64
Kabzens RD, Klinka K (1987) Initial quantitative characterization of soil nutrient regimes. II. Relationships among soil, vegetation, and site index. Can J Forest Res 17:1565–1571
Kadane JB, Lazar NA (2004) Methods and criteria for model selection. J Amer Statist Assoc 99(465):279–290
Kayahara GJ, Klinka K (1997) The relationship of site index to synoptic estimates of soil moisture and nutrients for western redcedar (Thuja plicata) in southern coastal British Columbia. Northwest Science 71(3):167–173
Klinka K, Chen HYH (2003) Potential productivity of three interior subalpine forest tree species in British Columbia. Forest Ecol Manag 175:521–530
Koerner W (1999) Impacts des anciennes utilization agricoles sur la fertilité du milieu forestier actuel. Université Paris 7, Institut National de la Recherche Agronomique, Nancy
Korf V (1939) The contribution to the mathematical formulation of volume ingrowth of forest stands. Lesnická Práce 18:339–379 (in Czech with English abstract)
Kozak A, Kozak R (2003) Does cross validation provide additional information in the evaluation of regression models? Can J For Res 33:976–987
Lanner RM (1985) On the insensitivity of height growth to spacing. Forest Ecol Manag 13(3–4):143–148
Lexer MJ, Hönninger K, Vacik H (2000) Modelling the effect of forest site conditions on the ecophysiological suitability of tree species: an approach based on fuzzy set theory. Computers and Electronics in Agriculture 27:393–399
Lindgren D, Ying CC, Elfving B, Lindgren K (1994) Site index variation with latitude and altitude in IUFRO Pinus-Contorta provenance experiments in western Canada and northern Sweden. Scand J Forest Res 9:270–274
Loetsch F, Zohrer F, Haller KE (1973) Forest inventory, vol II. BLV Verlagsgesellschaft, Munchen
Londo AJ (2002) Soil pH and tree species suitability in Mississippi. Mississippi: Mississippi State University, http://msucares.com/pubs/publications/p2311.pdf. Accessed 25 May 2008
Lukac M, Calfapietra C, Godbold DL (2003) Production, turnover and mycorrhizal colonization of root systems of three Populus species grown under elevated CO2 (POPFACE). Glob Change Biol 9:838–848
Mckenney DW, Pedlar JH (2003) Spatial models of site index based on climate and soil properties for two boreal tree species in Ontario, Canada. Forest Ecol Manag 175:497–507
Merganič J, Vorčák J, Merganičová K, Ďurský J, Miková A, Škvarenina J, Tuček J, Minďáš J (2003) Monitoring diversity horských lesov severnej Oravy. EFRA, Tvrdošín
Michajlov J (1949) Matematičko formuliranje zakonot za rastenjstvo na šumskite drva i nasady—Godiš. Zborník na zemjodelsko-šumarskog fak, Skopje
Michajlov J (1952) Matematische Formulierung des Gesetzes für Wachstum und Zuwachs der Waldbäume und Bestände. Schweiz Z Forstw 103(9/10):368–380
Monserud RA, Moody U, Breuer DW (1990) A soil-site study for inland Douglas-fir. Can J Forest Res 20:686–695
Monserud RA, Huang Sh, Yang Y (2006) Predicting lodgepole pine site index from climatic parameters in Alberta. Forest Chron 82(4):562–571
Motulsky HJ, Christopoluos A (2003) Fitting models to biological data using linear and nonlinear regression. A practical guide to curve fitting. GraphPad Software Inc., San Diego CA
Naesset E, Tveite B (1999) Stand volume functions for Picea abies in eastern, central, and northern Norway. Scand J Forest Res 14:164–174
Nigh G (1998) Prediction intervals for estimates of site index based on ecosystem type. Environ Manage 22(2):197–202
O’Brien RM (2007) A caution regarding rules of thumb for variance inflation factors. Qual Quant 41:673–690
Pande GC, Chaturvedi AN (1972) Stand volume, weight tables, and other crop studies in Mysore Gum (Eucalyptus hybrid). Indian Forester 98:286–297
Parkin TB (1993) Spatial variability of microbial process in soil—a review. J Environ Qual 22:409–417
Pretzsch H (1992) Konzeption und Konstruktion vonWuchsmodellen für Rein—und Mischbestände. Forstl Forschungsberichte München Bd., 115
Pretzsch H (2001) Modellierung desWaldwachstums. Parey, Berlin
Pretzsch H (2009) Forest dynamics, growth and yield: from measurement to model. Springer, 664 pp
Pretzsch H, Biber P, Dursky J (2002) The single-tree based stand simulator SILVA: construction, application and evaluation. Forest Ecol Manag 162:3–21
Quinn G, Keough M (2002) Experimental design and data analysis for biologists. Cambridge University Press, New York
Richards FJ (1959) A flexible growth function for empirical use. J Exp Bot 10:290–300
Robertson C (1991) Computationally intensive statistics. In: Lovie P, Lovie AD (eds) New developments in statistics for psychology and the social sciences. BPS and Routledge, London, pp 49–80
Robeson SM (2002) Increasing growing-season length in Illinois during the 20th century. Climatic Change 52:219–238
Robinson C, Schumacker RE (2009) Interaction effects: centering, variance inflation factor, and interpretation issues. Multiple Linear Regres Viewp 35(1):6–11
Šály R (1978) Pôda—základ lesnej produkcie. Príroda, Bratislava
Seynave I, Gégout J-C, Hervé J-Ch, Dhôte J-F, Drapier J, Bruno E, Dumé G (2005) Picea abies site index prediction by environmental factors and understorey vegetation: a two-scale approach based on survey databases. Can J Forest Res 35:1669–1678
Sharma M, Amateis RL, Burkhart HE (2002) Top height definition and its effect on site index determination in thinned and unthinned loblolly pine plantations. Forest Ecol Manag 168:163–175
Skovsgaard JP, Vanclay JK (2007) Forest site productivity: a review of the evolution of dendrometric concepts for even-aged stands. Forestry 81(1):13–31
Šmelko Š, Merganič J, Šebeň V, Raši R, Jankovič J (2006) Národná inventarizácia a monitoring lesov Slovenskej republiky. Metodika terénneho zberu údajov (3. doplnená verzia), NLC Zvolen
Šmelko Š, Šebeň V, Bošeľa M, Merganič J, Jankovič J (2008) National forest inventory and monitoring of the Slovak Republic 2005-2006. Basic concept and selected summary informations. National Forest Centre – Forest Research Institute, Department of forest inventory and management, Zvolen
Smith DM (1962) The practice of silviculture, 7th edn. Wiley, New York
Socha J (2008) Effect of topography and geology on the site index of Picea abies in the West Carpathian, Poland. Scand J Forest Res 23:203–213
Spiecker H, Mielikainen K, Kohl M, Skovsgaard JP (1996) Growth trends in European Forests. Springer, Berlin 372 p
Spurr SH, Barnes BV (1980) Forest ecology, 3rd edn. Wiley, New York
Swenson JJ, Waring RH, Fan W, Coops N (2005) Predicting site index with a physiologically based growth model across Oregon, USA. Can J Forest Res 35:1697–1707
R Development Core Team (2011) R: A language and environment for statistical computing, reference index version 2.10.0. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, dostupné na internete: http://www.R-project.org
Ung C-H, Bernier PY, Raulier F, Fournier RA, Lambert MC, Régnière J (2001) Biophysical site indices for shade tolerant and intolerant boreal species. Forest Sci 47:83–95
Van Der Maarel E (2005) Vegetation ecology. Blackwell Publishing, Oxford
Vladár J (1982) Encyklopédia Slovenska. VI. zväzok T-Ž, Veda
Vladovič J, Burgan K, Dubeň Z, Dupkala J, Flachbart V, Greč V, Hatala N, Hudecová D, Kučera J, Lupták I et al (1994) Lesné oblasti Slovenska. Lesoprojekt, Zvolen, p 500
Wang Y, Klinka K (1996) Use of synoptic variables in predicting white spruce site index. Forest Ecol Manag 80:95–105
Wang Y, Raulier F, Ung C-H (2005) Evaluation of spatial predictions of site index obtained by parametric and nonparametric methods—A case study of lodgepole pine productivity. Forest Ecol Manag 214:201–211
West PW (2004) Tree and forest measurement. Springer, Berlin
Acknowledgments
The data used for investigation came from National Forest Inventory and Monitoring of Slovakia forests, which was supported by Slovak Ministry of Agriculture. We would like to thank professor Štefan Šmelko, DrSc., who is the author of the Slovak National Forest Inventory. The data processing was supported within the project “Center of excellence for the support of decision making in forest and land,” ITMS: 26220120069 (20 %), on the basis of support from Operational Programme Research and Development funded by European Regional Development Fund, project APVV-0255-10 granted by the Slovak Agency for Research and Development, and the long-term research development project no. RVO 67985939.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by G. Kändler.
Rights and permissions
About this article
Cite this article
Bošeľa, M., Máliš, F., Kulla, L. et al. Ecologically based height growth model and derived raster maps of Norway spruce site index in the Western Carpathians. Eur J Forest Res 132, 691–705 (2013). https://doi.org/10.1007/s10342-013-0708-z
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10342-013-0708-z


