Skip to main content

Advertisement

Log in

Ecologically based height growth model and derived raster maps of Norway spruce site index in the Western Carpathians

  • Original Paper
  • Published:
European Journal of Forest Research Aims and scope Submit manuscript

Abstract

The purpose of this study was to find the ecological factors that most affect height growth of Norway spruce (Picea abies Karst.) over the Western Carpathians. The specific aim was to find climate and soil parameters which are influenced by climate change and can thus be used to make a forest growth model more sensitive to climate. From the results, a regression model was built which can predict top height growth of Norway spruce from ecological parameters. Data collected on 201 plots established within National Forest Inventory of Slovakia were used. The plots selected for the study were distributed almost over the whole Western Carpathians. Mean height of the 20 % largest spruce trees was used as dependent variable. From all investigated ecological factors, the growing season length explained as the number of days with temperature over 5 °C, the carbon-to-nitrogen ratio and soil acidity were shown to have the major impact on top height growth of Norway spruce. Finally, 76 % of total variability in top height was explained by the mentioned site variables. To obtain a user-friendly output, a probability matrix was developed showing the likelihood of a discrete site index to occur on different combinations of site factors. Moreover, raster maps showing the site index of spruce and its probability distribution were developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Agbu PA, Olsen KR (1990) Spatial variability of soil properties in selected Illinois Mollisols. Soil Sci 150:777–785

    Google Scholar 

  • Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19(6):716–723

    Article  Google Scholar 

  • Barnes VB, Zak RD, Denton RS, Spurr HS (1998) Forest ecology, 4th edn. Wiley, USA 774 pp

    Google Scholar 

  • Bergès L, Gégout J-C, Franc A (2006) Can understory vegetation accurately predict site index? A comparative study using floristic and abiotic indices in sessile oak (Quercus petraea Liebl.) stands in northern France. Ann Forest Sci 63:31–42

    Article  Google Scholar 

  • Bošeľa M (2011) Veľkoplošná variabilita a vzájomné vzťahy stanovištných charakteristík lesov Slovenska. (Dissertation thesis). National Forest Centre, Zvolen, 100 p

  • Bruchwald A, Dudek A, Michalak K, Rymer-Dudzinska T, Wroblewski L, Zasada M (1999) A growth model for Norway spruce stands. Sylwan 1:19–31 (in Polish)

    Google Scholar 

  • Cambardella CA, Moorman TB, Novak JM, Parkin TB, Karlen DL, Turco RF, Konopka AE (1994) Field-scale variability of soil properties in Central Iowa soils. Soil Sci Soc Am J 58:1501–1511

    Article  Google Scholar 

  • Corona P, Scotti R, Tarchiani N (1998) Relationship between environmental factors and site index in Douglas-Fir plantations in central Italy. Forest Ecol Manag 110:195–207

    Article  Google Scholar 

  • Curt Th, Bouchaud M, Agrech G (2001) Predicting site index of Douglas-Fir plantations from ecological variables in the Massif Central area of France. Forest Ecol Manag 149:61–74

    Article  Google Scholar 

  • Davis LS, Johnson KN (1987) Forest management, 3rd edn. McGraw-Hill, New York

    Google Scholar 

  • Draper NR, Smith H (1981) Applied regression analysis, 2nd edn. John Wiley & Sons Inc, New York

    Google Scholar 

  • Efron B (1982) The jackknife, the bootstrap and other resampling methods. Society for Industrial and Applied Mathematics, CBMS-NSF Monograph 38, Philadelphia

  • Elfving B, Kiviste A (1997) Construction of site index equations for Pinus sylvestris L. using permanent plot data in Sweden. Forest Ecol Manag 98:125–134

    Article  Google Scholar 

  • English M, Karrer G, Mutsch F (1991) Österreichische Waldbodenzustandsinventur. Teil I. Methodische Grundlagen. FBVA-Bericht 168/I, pp 5–22

  • Ercanli I, Gunlu A, Altun L, Baskent EZ (2008) Relationship between site index of oriental spruce [Picea orientalis (L.) Link] and ecological variables in Mac¸ka Turkey. Scand J Forest Res 23:319–329

    Article  Google Scholar 

  • Evert F (1964) Components of stand volume and its increment. J Forest 62:810–813

    Google Scholar 

  • Fabrika M (2004). Ekologická bonitácia v modeli rastu lesa Sibyla na podklade klimatických a pôdnych charakteristík. In: Climate change - weather extremes organisms and ecosystems : international bioclimatological workshop 2004. - Bratislava : Slovak bioclimatological society SAS

  • Fischer R, Beck W, Calatayud V, Cools N, De Vos B, Dobbertin M, Fleck S, Giordani P, Granke O, Kindermann G, Lorenz M, Meesenburg H, Meining S, Nagel H-D, Neumann M, Scheuschner T, Stofer S (2011) The condition of forests in Europe, 2011 executive report. ICP Forests and European Commission, Hamburg and Brussels 21

    Google Scholar 

  • Fontes L, Tomé M, Thompson F, Yeomans A, Luis JS, Savill P (2003) Modelling the Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) site index from site factors in Portugal. Forestry 76(5):491–505

    Article  Google Scholar 

  • Frich P, Alexander LV, Della-Marta P, Gleason B, Haylock M, Klein Tank AMG, Peterson T (2002) Observed coherent changes in climatic extremes during the second half of the 20th century. Climate Res 19:193–212

    Article  Google Scholar 

  • Fürst A (2008) 10th needle/leaf interlaboratory comparison test 2007/2008. Forest foliar coordinating centre/BFW, Vienna 110

    Google Scholar 

  • Gömöry D, Longauer R, Hlásny T, Pacalaj M, Strmeň S, Krajmerová D (2011) Adaptation to common optimum in different populations of Norway spruce (Picea abies Karst.). Eur J Forest Res 131 (2):401–411

    Google Scholar 

  • Gömöryová E, Gömöry D (1995) Relationships between environmental factors and height growth and yield of Norway spruce stands: a factor-analytic approach. Forestry 68(2):145–152

    Article  Google Scholar 

  • Hägglund B, Lundmark JE (1977) Site index estimation by means of site properties Scots pine and Norway spruce in Sweden. Studia Forestalia Suecica 138:5–38

    Google Scholar 

  • Hairston AB, Grigal DF (1991) Topographic influences on soil and trees within single mapping units on a sandy outwash landscape. Forest Ecol Manag 43:35–45

    Article  Google Scholar 

  • Halaj J (1978) Výškový rast a štruktúra porastov. Bratislava, Veda

    Google Scholar 

  • Halaj J, Petráš R (1998) Rastové tabuľky hlavných drevín. Slovak Academic Press, Bratislava

    Google Scholar 

  • Halaj J, Grék J, Pánek F, Petráš R, Řehák J (1987) Rastové tabuľky hlavných drevín ČSSR. Bratislava, Príroda

    Google Scholar 

  • Hiley WE (1959) Two-storied high forest. Forestry 32(2):113–116

    Google Scholar 

  • Hlásny T (2007) Modelling selected climate parameters in the ISATIS environment. In: Ostrava GIS (ed) 2007 [CD]. TU-VŠB, Ostrava

    Google Scholar 

  • Hlásny T, Barcza Z, Fabrika M, Balázs B et al (2011) Climate change impacts on growth and carbon balance of forests in Central Europe. Clim Res 47:219–236

    Article  Google Scholar 

  • Hók J, Kahan Š, Aubrecht R (2001) Geológia Slovenska. Univerzita Komenského, Bratislava

    Google Scholar 

  • Hunter IR, Gibson AR (1984) Predicting Pinus radiate site index from environmental variables. NZ J Forest Sci 14:53–64

    Google Scholar 

  • Kabzens RD, Klinka K (1987) Initial quantitative characterization of soil nutrient regimes. II. Relationships among soil, vegetation, and site index. Can J Forest Res 17:1565–1571

    Article  Google Scholar 

  • Kadane JB, Lazar NA (2004) Methods and criteria for model selection. J Amer Statist Assoc 99(465):279–290

    Article  Google Scholar 

  • Kayahara GJ, Klinka K (1997) The relationship of site index to synoptic estimates of soil moisture and nutrients for western redcedar (Thuja plicata) in southern coastal British Columbia. Northwest Science 71(3):167–173

    Google Scholar 

  • Klinka K, Chen HYH (2003) Potential productivity of three interior subalpine forest tree species in British Columbia. Forest Ecol Manag 175:521–530

    Article  Google Scholar 

  • Koerner W (1999) Impacts des anciennes utilization agricoles sur la fertilité du milieu forestier actuel. Université Paris 7, Institut National de la Recherche Agronomique, Nancy

  • Korf V (1939) The contribution to the mathematical formulation of volume ingrowth of forest stands. Lesnická Práce 18:339–379 (in Czech with English abstract)

    Google Scholar 

  • Kozak A, Kozak R (2003) Does cross validation provide additional information in the evaluation of regression models? Can J For Res 33:976–987

    Article  Google Scholar 

  • Lanner RM (1985) On the insensitivity of height growth to spacing. Forest Ecol Manag 13(3–4):143–148

    Article  Google Scholar 

  • Lexer MJ, Hönninger K, Vacik H (2000) Modelling the effect of forest site conditions on the ecophysiological suitability of tree species: an approach based on fuzzy set theory. Computers and Electronics in Agriculture 27:393–399

    Article  Google Scholar 

  • Lindgren D, Ying CC, Elfving B, Lindgren K (1994) Site index variation with latitude and altitude in IUFRO Pinus-Contorta provenance experiments in western Canada and northern Sweden. Scand J Forest Res 9:270–274

    Article  Google Scholar 

  • Loetsch F, Zohrer F, Haller KE (1973) Forest inventory, vol II. BLV Verlagsgesellschaft, Munchen

    Google Scholar 

  • Londo AJ (2002) Soil pH and tree species suitability in Mississippi. Mississippi: Mississippi State University, http://msucares.com/pubs/publications/p2311.pdf. Accessed 25 May 2008

  • Lukac M, Calfapietra C, Godbold DL (2003) Production, turnover and mycorrhizal colonization of root systems of three Populus species grown under elevated CO2 (POPFACE). Glob Change Biol 9:838–848

    Article  Google Scholar 

  • Mckenney DW, Pedlar JH (2003) Spatial models of site index based on climate and soil properties for two boreal tree species in Ontario, Canada. Forest Ecol Manag 175:497–507

    Article  Google Scholar 

  • Merganič J, Vorčák J, Merganičová K, Ďurský J, Miková A, Škvarenina J, Tuček J, Minďáš J (2003) Monitoring diversity horských lesov severnej Oravy. EFRA, Tvrdošín

    Google Scholar 

  • Michajlov J (1949) Matematičko formuliranje zakonot za rastenjstvo na šumskite drva i nasady—Godiš. Zborník na zemjodelsko-šumarskog fak, Skopje

    Google Scholar 

  • Michajlov J (1952) Matematische Formulierung des Gesetzes für Wachstum und Zuwachs der Waldbäume und Bestände. Schweiz Z Forstw 103(9/10):368–380

    Google Scholar 

  • Monserud RA, Moody U, Breuer DW (1990) A soil-site study for inland Douglas-fir. Can J Forest Res 20:686–695

    Article  Google Scholar 

  • Monserud RA, Huang Sh, Yang Y (2006) Predicting lodgepole pine site index from climatic parameters in Alberta. Forest Chron 82(4):562–571

    Google Scholar 

  • Motulsky HJ, Christopoluos A (2003) Fitting models to biological data using linear and nonlinear regression. A practical guide to curve fitting. GraphPad Software Inc., San Diego CA

    Google Scholar 

  • Naesset E, Tveite B (1999) Stand volume functions for Picea abies in eastern, central, and northern Norway. Scand J Forest Res 14:164–174

    Article  Google Scholar 

  • Nigh G (1998) Prediction intervals for estimates of site index based on ecosystem type. Environ Manage 22(2):197–202

    Article  PubMed  Google Scholar 

  • O’Brien RM (2007) A caution regarding rules of thumb for variance inflation factors. Qual Quant 41:673–690

    Article  Google Scholar 

  • Pande GC, Chaturvedi AN (1972) Stand volume, weight tables, and other crop studies in Mysore Gum (Eucalyptus hybrid). Indian Forester 98:286–297

    Google Scholar 

  • Parkin TB (1993) Spatial variability of microbial process in soil—a review. J Environ Qual 22:409–417

    Article  Google Scholar 

  • Pretzsch H (1992) Konzeption und Konstruktion vonWuchsmodellen für Rein—und Mischbestände. Forstl Forschungsberichte München Bd., 115

  • Pretzsch H (2001) Modellierung desWaldwachstums. Parey, Berlin

    Google Scholar 

  • Pretzsch H (2009) Forest dynamics, growth and yield: from measurement to model. Springer, 664 pp

  • Pretzsch H, Biber P, Dursky J (2002) The single-tree based stand simulator SILVA: construction, application and evaluation. Forest Ecol Manag 162:3–21

    Article  Google Scholar 

  • Quinn G, Keough M (2002) Experimental design and data analysis for biologists. Cambridge University Press, New York

    Book  Google Scholar 

  • Richards FJ (1959) A flexible growth function for empirical use. J Exp Bot 10:290–300

    Article  Google Scholar 

  • Robertson C (1991) Computationally intensive statistics. In: Lovie P, Lovie AD (eds) New developments in statistics for psychology and the social sciences. BPS and Routledge, London, pp 49–80

    Google Scholar 

  • Robeson SM (2002) Increasing growing-season length in Illinois during the 20th century. Climatic Change 52:219–238

    Article  Google Scholar 

  • Robinson C, Schumacker RE (2009) Interaction effects: centering, variance inflation factor, and interpretation issues. Multiple Linear Regres Viewp 35(1):6–11

    Google Scholar 

  • Šály R (1978) Pôda—základ lesnej produkcie. Príroda, Bratislava

    Google Scholar 

  • Seynave I, Gégout J-C, Hervé J-Ch, Dhôte J-F, Drapier J, Bruno E, Dumé G (2005) Picea abies site index prediction by environmental factors and understorey vegetation: a two-scale approach based on survey databases. Can J Forest Res 35:1669–1678

    Article  CAS  Google Scholar 

  • Sharma M, Amateis RL, Burkhart HE (2002) Top height definition and its effect on site index determination in thinned and unthinned loblolly pine plantations. Forest Ecol Manag 168:163–175

    Article  Google Scholar 

  • Skovsgaard JP, Vanclay JK (2007) Forest site productivity: a review of the evolution of dendrometric concepts for even-aged stands. Forestry 81(1):13–31

    Article  Google Scholar 

  • Šmelko Š, Merganič J, Šebeň V, Raši R, Jankovič J (2006) Národná inventarizácia a monitoring lesov Slovenskej republiky. Metodika terénneho zberu údajov (3. doplnená verzia), NLC Zvolen

  • Šmelko Š, Šebeň V, Bošeľa M, Merganič J, Jankovič J (2008) National forest inventory and monitoring of the Slovak Republic 2005-2006. Basic concept and selected summary informations. National Forest Centre – Forest Research Institute, Department of forest inventory and management, Zvolen

  • Smith DM (1962) The practice of silviculture, 7th edn. Wiley, New York

  • Socha J (2008) Effect of topography and geology on the site index of Picea abies in the West Carpathian, Poland. Scand J Forest Res 23:203–213

    Article  Google Scholar 

  • Spiecker H, Mielikainen K, Kohl M, Skovsgaard JP (1996) Growth trends in European Forests. Springer, Berlin 372 p

  • Spurr SH, Barnes BV (1980) Forest ecology, 3rd edn. Wiley, New York

    Google Scholar 

  • Swenson JJ, Waring RH, Fan W, Coops N (2005) Predicting site index with a physiologically based growth model across Oregon, USA. Can J Forest Res 35:1697–1707

    Article  Google Scholar 

  • R Development Core Team (2011) R: A language and environment for statistical computing, reference index version 2.10.0. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, dostupné na internete: http://www.R-project.org

  • Ung C-H, Bernier PY, Raulier F, Fournier RA, Lambert MC, Régnière J (2001) Biophysical site indices for shade tolerant and intolerant boreal species. Forest Sci 47:83–95

    Google Scholar 

  • Van Der Maarel E (2005) Vegetation ecology. Blackwell Publishing, Oxford

    Google Scholar 

  • Vladár J (1982) Encyklopédia Slovenska. VI. zväzok T-Ž, Veda

    Google Scholar 

  • Vladovič J, Burgan K, Dubeň Z, Dupkala J, Flachbart V, Greč V, Hatala N, Hudecová D, Kučera J, Lupták I et al (1994) Lesné oblasti Slovenska. Lesoprojekt, Zvolen, p 500

    Google Scholar 

  • Wang Y, Klinka K (1996) Use of synoptic variables in predicting white spruce site index. Forest Ecol Manag 80:95–105

    Article  Google Scholar 

  • Wang Y, Raulier F, Ung C-H (2005) Evaluation of spatial predictions of site index obtained by parametric and nonparametric methods—A case study of lodgepole pine productivity. Forest Ecol Manag 214:201–211

    Article  Google Scholar 

  • West PW (2004) Tree and forest measurement. Springer, Berlin

    Book  Google Scholar 

Download references

Acknowledgments

The data used for investigation came from National Forest Inventory and Monitoring of Slovakia forests, which was supported by Slovak Ministry of Agriculture. We would like to thank professor Štefan Šmelko, DrSc., who is the author of the Slovak National Forest Inventory. The data processing was supported within the project “Center of excellence for the support of decision making in forest and land,” ITMS: 26220120069 (20 %), on the basis of support from Operational Programme Research and Development funded by European Regional Development Fund, project APVV-0255-10 granted by the Slovak Agency for Research and Development, and the long-term research development project no. RVO 67985939.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michal Bošeľa.

Additional information

Communicated by G. Kändler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bošeľa, M., Máliš, F., Kulla, L. et al. Ecologically based height growth model and derived raster maps of Norway spruce site index in the Western Carpathians. Eur J Forest Res 132, 691–705 (2013). https://doi.org/10.1007/s10342-013-0708-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10342-013-0708-z

Keywords

Profiles

  1. Vladimír Šebeň