European Journal of Forest Research

, Volume 132, Issue 4, pp 565–577 | Cite as

Description of a new procedure to estimate the carbon stocks of all forest pools and impact assessment of methodological choices on the estimates

  • Nicolas LatteEmail author
  • Gilles Colinet
  • Adeline Fayolle
  • Philippe Lejeune
  • Jacques Hébert
  • Hugues Claessens
  • Sébastien Bauwens


Forest ecosystems play a major role in atmospheric carbon sequestration and emission. Comparable organic carbon stock estimates at temporal and spatial scales for all forest pools are needed for scientific investigations and political purposes. Therefore, we developed a new carbon stock (CS) estimation procedure that combines forest inventory and soil and litter geodatabases at a regional scale (southern Belgium). This procedure can be implemented in other regions and countries on condition that available external carbon soil and litter data can be linked to forest inventory plots. The presented procedure includes a specific CS estimation method for each of the following forest pools and subpools (in brackets): living biomass (aboveground and belowground), deadwood (dead trees and snags, coarse woody debris and stumps), litter, and soil. The total CS of the forest was estimated at 86 Tg (185 Mg ha−1). Soil up to 0.2 m depth, living biomass, litter, and deadwood CSs account, respectively, for 48, 47, 4, and 1 % of the total CS. The analysis of the CS variation within the pools across ecoregions and forest types revealed in particular that: (1) the living biomass CS of broadleaved forests exceeds that of coniferous forests, (2) the soil and litter CSs of coniferous forest exceed those of broadleaved forests, and (3) beech stands come at the top in carbon stocking capacity. Because our estimates differ sometimes significantly from the previous studies, we compared different methods and their impacts on the estimates. We demonstrated that estimates may vary highly, from −16 to +12 %, depending on the selected methods. Methodological choices are thus essential especially for estimating CO2 fluxes by the stock change approach. The sources of error and the accuracy of the estimates were discussed extensively.


Temperate forest Forest inventory Soil map Biomass equation Biomass factor Wood basic density 



Biomass factor


CORINE Land Cover


Carbon stock


Circumference at 1.3 m height


Diameter at breast height


Digital Soil Map of Wallonia


Intergovernmental panel on climate change


Main soil unit


National forest inventory


Regional forest inventory of Wallonia


Tree height


Wood basic density



The authors thank Hugues Lecomte (RFIW) and Xavier Legrain (Aardewerk) for their data assistance, and Jacques Rondeux and Matthieu Alderweireld for constructive comments. This study was funded in part by the Nature and Forest Department of Wallonia.


  1. Baritz R, Seufert G, Montanarella L, Van Ranst E (2010) Carbon concentrations and stocks in forest soils of Europe. For Ecol Manag 260(3):262–277CrossRefGoogle Scholar
  2. Boon W (1984) Onderzoek naar het verband tussen het koolstofpercentage en de volumedichtheid van de grond. Bodemkundige Dienst van België Heverlee, BelgiumGoogle Scholar
  3. Bouchon J (1975) Précision des mesures de superficie par comptage de points. Ann Sci For 32(2):131–134CrossRefGoogle Scholar
  4. Brown S (1997) Estimating biomass and biomass change of tropical forests: a primer, FAO forestry paper. FAO, RomeGoogle Scholar
  5. Colinet G, Weissen F, Bock L (2010) Suivi pédologique dans le cadre de l'inventaire permanent des ressources ligneuses. Rapport de fin de convention. Gembloux Agro-Bio Tech (ULg). BelgiumGoogle Scholar
  6. Coomes DA, Allen RB, Scott NA, Goulding C, Beets P (2002) Designing systems to monitor carbon stocks in forests and shrublands. For Ecol Manage 164(1–3):89–108CrossRefGoogle Scholar
  7. Dagnelie P, Palm R, Rondeux J, Thill A (1999) Tables de cubage des arbres et des peuplements forestiers. Les Presses Agronomiques de Gembloux. BelgiumGoogle Scholar
  8. De Leenheer L, Maes L, Marcour L (1954) De bepaling van CaCO3 in gronden. Interne mededeling Landbouwhogeschool Gent, GhentGoogle Scholar
  9. De Leenheer L, Appelmans F, Vandamme J (1968) Cartes perforées et ordinateur comme instruments pour la caractérisation du sol et la pédologie régionale; le système des cartes perforées de la section “caractérisation du sol” de la cartographie des sols de la Belgique. Pédologie 18:208–227Google Scholar
  10. De Vos B, Quataert M, Deckers P, Jozef Muys B (2005) Predictive quality of pedotransfer functions for estimating bulk density of forest soils. Soil Sci Soc Am J 69(2):500CrossRefGoogle Scholar
  11. De Vos B, Lettens S, Muys B, Deckers JA (2007) Walkley–Black analysis of forest soil organic carbon: recovery, limitations and uncertainty. Soil Use Manag 23(3):221–229CrossRefGoogle Scholar
  12. Delecour F (1980) Essai de classification pratique des humus. Pedologie 30(2):225–241Google Scholar
  13. Dieter M, Elsasser P (2002) Carbon stocks and carbon stock changes in the tree biomass of Germany’s forests. Forstwissenschaftliches Centralblatt 121(4):195–210CrossRefGoogle Scholar
  14. Eriksson E, Berg S (2007) Implications of environmental quality objectives on the potential of forestry to reduce net CO2 emissions—A case study in central Sweden. Forestry 80(2):99–111CrossRefGoogle Scholar
  15. Goidts E, Van Wesemael B, Crucifix M (2009) Magnitude and sources of uncertainties in soil organic carbon (SOC) stock assessments at various scales. Eur J Soil Sci 60(5):723–739CrossRefGoogle Scholar
  16. Henry M, Picard N, Trotta C, Manlay RJ, Valentini R, Bernoux M, Saint-André L (2011) Estimating tree biomass of sub-Saharan African forests: a review of available allometric equations. Silva Fenn 45(3):477–569Google Scholar
  17. Houghton RA (2005) Aboveground forest biomass and the global carbon balance. Glob Change Biol 11(6):945–958CrossRefGoogle Scholar
  18. Intergovernmental Panel on Climate Change (2006) 2006 IPCC guidelines for national greenhouse gas inventories, vol 4: Agriculture, forestry and other land use. Cambridge University PressGoogle Scholar
  19. Jabiol B, Brethes A, Ponge J, Toutain F, Brun J (2007) L’humus sous toutes ses formes, 2nd edn. ENGREF, NancyGoogle Scholar
  20. Karjalainen T, Pussinen A, Liski J, Nabuurs GJ, Eggers T, Lapveteläinen T, Kaipainen T (2003) Scenario analysis of the impacts of forest management and climate change on the European forest sector carbon budget. For Policy Econ 5(2):141–155CrossRefGoogle Scholar
  21. Legrain X (2005) Etude de faisabilité de la phase ‘révision partielle’ du Projet de Cartographie Numérique des Sols de Wallonie (PCNSW) - Evaluation de la base de données AARDEWERK. Gembloux Agro-Bio Tech (ULg), BelgiumGoogle Scholar
  22. Lehtonen A, Mäkipää R, Heikkinen J, Sievänen R, Liski J (2004) Biomass expansion factors (BEFs) for Scots pine, Norway spruce and birch according to stand age for boreal forests. For Ecol Manage 188:211–224CrossRefGoogle Scholar
  23. Lettens S, Orshoven J, Wesemael B, Muys B (2004) Soil organic and inorganic carbon contents of landscape units in Belgium derived using data from 1950 to 1970. Soil Use Manag 20(1):40–47CrossRefGoogle Scholar
  24. Lettens S, Orshoven J, Wesemael B, Muys B, Perrin D (2005a) Soil organic carbon changes in landscape units of Belgium between 1960 and 2000 with reference to 1990. Glob Change Biol 11(12):2128–2140CrossRefGoogle Scholar
  25. Lettens S, Van Orshoven J, van Wesemael B, De Vos B, Muys B (2005b) Stocks and fluxes of soil organic carbon for landscape units in Belgium derived from heterogeneous data sets for 1990 and 2000. Geoderma 127(1–2):11–23CrossRefGoogle Scholar
  26. Lettens S, Orshoven J, Perrin D, Wesemael BV, Muys B (2008) Organic carbon stocks and stock changes of forest biomass in Belgium derived from forest inventory data in a spatially explicit approach. Ann For Sci 65: (online)Google Scholar
  27. Liski J, Perruchoud D, Karjalainen T (2002) Increasing carbon stocks in the forest soils of western Europe. For Ecol Manage 169(1–2):159–175CrossRefGoogle Scholar
  28. Liski J, Lehtonen A, Palosuo T, Peltoniemi M, Eggers T, Muukkonen P, Mäkipää R (2006) Carbon accumulation in Finland’s forests 1922–2004–an estimate obtained by combination of forest inventory data with modelling of biomass, litter and soil. Ann For Sci 63(7):687–697CrossRefGoogle Scholar
  29. Mäkipää R, Lehtonen A, Peltoniemi M (2008) Monitoring carbon stock changes in European forests using forest inventory data. In: Dolman AJ, Valentini R, Freibauer A (eds) The Continental-scale greenhouse gas balance of Europe. Springer, New-York, pp 191–214CrossRefGoogle Scholar
  30. Muukkonen P (2007) Generalized allometric volume and biomass equations for some tree species in Europe. Eur J Forest Res 126(2):157–166CrossRefGoogle Scholar
  31. Nabuurs GJ, Schelhaas MJ, Mohren GMJ, Field CB (2003) Temporal evolution of the European forest sector carbon sink from 1950 to 1999. Glob Change Biol 9(2):152–160CrossRefGoogle Scholar
  32. Pekkarinen A, Reithmaier L, Strobl P (2009) Pan-European forest/non-forest mapping with Landsat ETM+ and CORINE Land Cover 2000 data. ISPRS J Photogramm Remote Sens 64(2):171–183CrossRefGoogle Scholar
  33. Perdigão V, Annoni A (1997) Technical and methodological guide for updating CORINE Land Cover data base. European Commission, EUR 17288, LuxembourgGoogle Scholar
  34. Ponette Q, Ulrich E, Brethes A, Bonneau M, Lanier M (1997) RENECOFOR–Chimie des sols dans les 102 peuplements du réseau. Office national des forêts, Département des recherches techniques, FontainebleauGoogle Scholar
  35. Rawls WJ (1983) Estimating soil bulk density from particle size analysis and organic matter content. Soil Sci 135(2):123–125CrossRefGoogle Scholar
  36. Rondeux J, Sanchez C, Latte N (2010) Pathways for common reporting. In: Tomppo E, Gschwantner T, Lawrence M, McRoberts RE (eds) National forest inventories. Springer, Berlin, pp 73–87Google Scholar
  37. Sandström F, Petersson H, Kruys N, Stahl G (2007) Biomass conversion factors (density and carbon concentration) by decay classes for dead wood of Pinus sylvestris, Picea abies and Betula spp. in boreal forests of Sweden. For Ecol Manage 243(1):19–27CrossRefGoogle Scholar
  38. Somogyi Z, Cienciala E, Mäkipää R, Muukkonen P, Lehtonen A, Weiss P (2007) Indirect methods of large-scale forest biomass estimation. Eur J Forest Res 126(2):197–207CrossRefGoogle Scholar
  39. Springer U, Klee J (1954) Prüfung der Leistungsfähigkeit von einigen wichtigeren Verfahren zur Bestimmung des Kohlenstoffs mittels Chromschwefelsäure sowie Vorschlag einer neuen Schnellmethode. J Plant Nutr Soil Sci 64:1–26Google Scholar
  40. Stevens A, Van Wesemael B (2008) Soil organic carbon dynamics at the regional scale as influenced by land use history: a case study in forest soils from southern Belgium. Soil Use Manag 24(1):69–79CrossRefGoogle Scholar
  41. Vallet P, Dhôte J-F, Moguédec GL, Ravart M, Pignard G (2006) Development of total aboveground volume equations for seven important forest tree species in France. For Ecol Manage 229(1–3):98–110CrossRefGoogle Scholar
  42. Van Orshoven J, Maes J, Vereecken H, Feyen J, Dudal R (1988) A structured database of Belgian soil profile data. Pedologie Bulletin van de Belgische bodemkundige vereniging 38(2):191–206Google Scholar
  43. Van Orshoven J, Deckers JA, Vandenbroucke D, Feyen J (1993) The completed database of Belgian soil profile data and its applicability in the planning and management of rural land. Bulletin des Recherches Agronomiques de Gembloux 28(2–3):197–222Google Scholar
  44. Van Wesemael B, Van Orshoven J, Laitat E (2006) Modeling ecosystem trace gas emissions EV14 (METAGE) - Part 2: Global change, ecosystems and biodiversity. Accessed 1 June 2012
  45. Vande Walle I, Van Camp N, Perrin D, Lemeur R, Verheyen K, Van Wesemael B, Laitat E (2005) Growing stock-based assessment of the carbon stock in the Belgian forest biomass. Ann For Sci 62(8):853–864CrossRefGoogle Scholar
  46. Veron P, Bah BB (2007) Mise en oeuvre de la phase "interprétation" du Projet de Cartographie Numérique des Sols de Wallonie (P.C.N.S.W.). Rapport final de convention. Gembloux Agro-Bio Tech (ULg), BelgiumGoogle Scholar
  47. Wagenführ R, Schreiber C (1985) Holzatlas, 2nd edn. VEB Fachbuchverlag Leipzig, Leipzig Google Scholar
  48. Walkley A, Black IA (1934) An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci 37(1):29CrossRefGoogle Scholar
  49. Yatskov M, Harmon ME, Krankina ON (2003) A chronosequence of wood decomposition in the boreal forests of Russia. Can J For Res 33(7):1211–1226CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Nicolas Latte
    • 1
    Email author
  • Gilles Colinet
    • 2
  • Adeline Fayolle
    • 1
  • Philippe Lejeune
    • 1
  • Jacques Hébert
    • 1
  • Hugues Claessens
    • 1
  • Sébastien Bauwens
    • 1
  1. 1.Gembloux Agro-Bio TechUniversity of Liège (Ulg), Forest and Nature ManagementGemblouxBelgium
  2. 2.Gembloux Agro-Bio TechUniversity of Liège (Ulg), Soil - Water SystemsGemblouxBelgium

Personalised recommendations