Skip to main content
Log in

Tree age effect on fine-root and leaf morphology in a silver birch forest chronosequence

  • Original Paper
  • Published:
European Journal of Forest Research Aims and scope Submit manuscript

Abstract

The influence of forest ageing on fine-root morphology and relations between fine-root and leaf characteristics is poorly studied. The aim of this study was to analyse age-driven changes in ectomycorrhizal roots (EcM roots) and leaf morphology in a chronosequence of silver birch (Betula pendula Roth.), which would provide a better understanding of adaptation responses and acclimation capacity of tree roots and leaves. The chronosequence included six age classes (3, 6, 14, 32, 45, and 60 years.). All stands had regenerated naturally and grew in a highly productive Oxalis forest site type in Estonia. Most changes in the morphology of EcM roots and leaves of silver birch occur faster at a young age. The functional parameters—mean specific area of EcM root (SRA) and leaf specific area (SLA) as well as leaf N—decreased with age. EcM root SRA and specific root length (SRL) decreased with stand age as a result of increased mean diameter and tissue density. In age classes of 6, 14, and 32 years, the total number of dominating EcM taxa was 34, and the distribution of four different dominating EcM exploration types (contact-, short-, medium-, long-distance) was similar. We conclude that high values of SRA, SLA, and leaf N measured in young silver birch stands indicate high activity of physiological processes necessary for fast-growing young trees. A decrease of SLA and SRA and N in the chronosequence of fertile stands of silver birch is most probably caused by down-regulation of growth, affecting simultaneously leaves and fine roots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abarenkov K, Nilsson RH, Larsson K-H, Alexander IJ, Eberhardt U, Erland S, Høiland K, Kjøller R, Larsson E, Pennanen T et al (2010) The UNITE database for molecular identification of fungi—recent updates and future perspectives. New Phytol 186:281–285

    Article  PubMed  Google Scholar 

  • Agerer R (2001) Exploration types of ectomycorrhizae: a proposal to classify ectomycorrhizal mycelial systems according to their patterns of differentiation and putative ecological importance. Mycorrhiza 11:107–114

    Article  Google Scholar 

  • Ahti T, Hamet-Ahti L, Jalas J (1968) Vegetation zones and their sections in northwestern Europe. Ann Bot Fenn 5:169–211

    Google Scholar 

  • Bakker MR, Jolicoeur E, Trichet P, Augusto L, Plassard C, Guinberteau J, Loustau D (2009) Adaptation of fine roots to annual fertilization and irrigation in a 13-year-old Pinus pinaster stand. Tree Physiol 29:229–238

    Article  PubMed  CAS  Google Scholar 

  • Bauhus J, Messier C (1999) Soil exploitation strategies of fine roots in different tree species of the southern boreal forest of eastern Canada. Can J For Res 29:260–273

    Google Scholar 

  • Børja I, De Wit HA, Steffenrem A, Majdi H (2008) Stand age and fine root biomass, distribution and morphology in a Norway spruce chronosequence in southeast Norway. Tree Physiol 28:773–784

    Article  PubMed  Google Scholar 

  • Borken W, Kossmann G, Matzner E (2007) Biomass, morphology and nutrient contents of fine roots in four Norway spruce stands. Plant Soil 292:79–93

    Article  CAS  Google Scholar 

  • Cannell MGR, Thornley JHM (2000) Modelling the components of plant respiration: some guiding principles. Ann Bot (London) 85:45–54

    Article  CAS  Google Scholar 

  • Claus A, George E (2005) Effect of stand age on fine-root biomass and biomass distribution in three European forest chronosequences. Can J For Res 35:1617–1625

    Article  Google Scholar 

  • Comas LH, Eissenstat DM (2004) Linking fine root traits to maximum potential growth rate among 11 mature temperate tree species. Funct Ecol 18:388–397

    Article  Google Scholar 

  • Comas LH, Eissenstat DM (2009) Patterns in root trait variation among 25 co-existing north american forest species. New Phytol 182:919–928

    Article  PubMed  CAS  Google Scholar 

  • Courty PE, Buée M, Diedhiou AG, Frey-Klett P, Le Tacon F, Rineau F, Turpault M-P, Uroz S, Garbaye J (2010) The role of ectomycorrhizal communities in forest ecosystem processes: new perspectives and emerging concepts. Soil Biol Biochem 42:679–698

    Article  CAS  Google Scholar 

  • Curt T, Prevosto B (2003) Rooting strategy of naturally regenerated beech in silver birch and Scots pine woodlands. Plant Soil 255:265–279

    Article  CAS  Google Scholar 

  • Delagrange S (2011) Light- and seasonal-induced plasticity in leaf morphology, N partitioning and photosynthetic capacity of two temperate deciduous species. Environ Exp Bot 70:1–10

    Article  Google Scholar 

  • Eissenstat DM, Yanai RD (1997) The ecology of root life span. Adv Ecol Res 27:1–62

    Article  Google Scholar 

  • Ericsson T (1994) Nutrient dynamics and requirements of forest crops. New Zeal J For Sci 24:133–168

  • Fujimaki R, Tateno R, Tokuchi N (2007) Root development across a chronosequence in a japanese cedar (Cryptomeria japonica D. don) plantation. J For Res 12:96–102

    Article  Google Scholar 

  • Gower ST, McMurtrie RE, Murty D (1996) Aboveground net primary production decline with stand age: potential causes. Trends Ecol Evol 11:378–382

    Article  PubMed  CAS  Google Scholar 

  • Graciano C, Goya JF, Frangi JL (2007) Eucalyptus grandis plantations in Argentina in the context of sustainable silviculture. In: Verne NC (ed) Forest Ecology Research Horizons. Nova Science Publishers, New York, pp 39–76

    Google Scholar 

  • Guo DL, Mitchell RJ, Hendricks JJ (2004) Fine root branch orders respond differentially to carbon source-sink manipulations in a longleaf pine forest. Oecologia 140:450–457

    Article  PubMed  Google Scholar 

  • Hassiotou F, Renton M, Ludwig M, Evans JR, Veneklaas EJ (2010) Photosynthesis at an extreme end of the leaf trait spectrum: how does it relate to high leaf dry mass per area and associated structural parameters? J Exp Bot 61:3015–3028

    Article  PubMed  CAS  Google Scholar 

  • He CX, Li JY, Zhou P, Guo M, Zheng QS (2008) Changes of leaf morphological, anatomical structure and carbon isotope ratio with the height of the wangtian tree (Parashorea chinensis) in Xishuangbanna, China. J Integr Plant Biol 50:168–173

    Article  PubMed  Google Scholar 

  • Helmisaari H-S, Ostonen I, Lõhmus K, Derome J, Lindroos A-J, Meril P, Nöjd P (2009) Ectomycorrhizal root tips in relation to site and stand characteristics in Norway spruce and Scots pine stands in boreal forests. Tree Physiol 29:445–456

    Article  PubMed  CAS  Google Scholar 

  • Hodge A, Berta G, Doussan C, Merchan F, Crespi M (2009) Plant root growth, architecture and function. Plant Soil 321:153–187

    Article  CAS  Google Scholar 

  • Hynynen J, Niemistö P, Viherä-Aarnio A, Brunner A, Hein S, Velling P (2010) Silviculture of birch (Betula pendula Roth and Betula pubescens Ehrh.) in northern Europe. Forestry 83:103–119

    Article  Google Scholar 

  • Imada S, Yamanaka N, Tamai S (2010) Fine-root growth, fine root mortality, and leaf morphological change of Populus alba in response to fluctuating water tables. Trees Struct Funct 24:499–506

    Article  Google Scholar 

  • Ingestad T, McDonald AJS (1989) Interaction between nitrogen and photon flux density in birch seedlings at steady-state nutrition. Physiol Plantarum 77:1–11

    Article  CAS  Google Scholar 

  • Jagodziński AM, Kałucka I (2010) Fine roots biomass and morphology in a chronosequence of young Pinus silvestris stands growing on a reclaimed lignite mine spoil heap. Dendrobiol 64:19–30

    Google Scholar 

  • Kalliokoski T, Pennanen T, Nygren P, Sievänen R, Helmisaari H-S (2010) Belowground interspecific competition in mixed boreal forests: fine root and ectomycorrhiza characteristics along stand developmental stage and soil fertility gradients. Plant Soil 330:73–89

    Article  CAS  Google Scholar 

  • Konôpka B, Takáčová E (2010) Effects of liming and NPK-fertilization on the soil and fine roots in a Norway spruce stand. Ekológia 29:28–39

    Google Scholar 

  • Kutsch WL, Wirth C, Kattge J, Noellert S, Herbst M, Kappen L (2009) Ecophysiological characteristics of large, mature trees and consequences for old-growth functioning. In: Wirth C, Gleixner G, Heimann M (eds) Old-growth forests: function, fate and value. Ecological studies, Vol 207, Part 2, Springer, Berlin, pp 57–79

  • Kuznetsova T, Lukjanova A, Mandre M, Lõhmus K (2010) Aboveground biomass and nutrient accumulation dynamics in young black alder, silver birch and Scots pine plantations on reclaimed oil shale mining areas in Estonia. For Ecol Manag 262:56–64

    Article  Google Scholar 

  • Lambers H, Poorter H (1992) Inherent variation in growth rate between higher plants: a search for physiological causes and ecological consequences. Adv Ecol Res 23:187–261

    Article  CAS  Google Scholar 

  • Lambers H, Chapin FS III, Pons TL (2006) Plant physiological ecology. Springer, New York

    Google Scholar 

  • Leuschner C, Harteveld M, Hertel D (2009) Consequences of increasing forest use intensity for biomass, morphology and growth of fine roots in a tropical moist forest on Sulawesi, Indonesia. Agric Ecosyst Environ 129:474–481

    Article  Google Scholar 

  • Liu G, Freschet GT, Pan X, Cornelissen JHC, Li Y, Dong M (2010) Coordinated variation in leaf and root traits across multiple spatial scales in Chinese semi-arid and arid ecosystems. New Phytol 188:543–553

    Article  PubMed  Google Scholar 

  • Lõhmus E (1984) Estonian forest site types (In Estonian). Valgus, Tallinn

    Google Scholar 

  • Lõhmus K, Oja T, Lasn R (1989) Specific root area: a soil characteristic. Plant Soil 119:245–249

    Article  Google Scholar 

  • Lõhmus K, Kull A, Truu J, Truu M, Kaar E, Ostonen I, Meel S, Kuznetsova T, Rosenvald K, Uri V, Kurvits V, Mander Ü (2007) The reclamation of the North Estonian oil shale mining area. In: Mander Ü, Wiggering H, Helming K (eds) Multifunctional land use: Meeting future demands for landscape goods and services. Springer, Berlin Heidelberg, pp 387–401

    Chapter  Google Scholar 

  • Makita N, Hirano Y, Mizoguchi T, Kominami Y, Dannoura M, Ishii H, Finer L, Kanazawa Y (2011) Very fine roots respond to soil depth: biomass allocation, morphology, and physiology in a broad-leaved temperate forest. Ecol Res 26:95–104

    Article  Google Scholar 

  • Marschner H (2005) Mineral nutrition of higher plants. Academic Press, London

    Google Scholar 

  • Mediavilla S, Escudero A (2009) Ontogenetic changes in leaf phenology of two co-occurring mediterranean oaks differing in leaf life span. Ecol Res 24:1083–1090

    Article  Google Scholar 

  • Niklas KJ, Cobb ED (2008) Evidence for “diminishing returns” from the scaling of stem diameter and specific leaf area. Am J Bot 95:549–557

    Article  PubMed  Google Scholar 

  • Niklas KJ, Cobb ED (2010) Ontogenetic changes in the numbers of short-vs. long-shoots account for decreasing specific leaf area in Acer rubrum (aceraceae) as trees increase in size. Am J Bot 97:27–37

    Article  PubMed  Google Scholar 

  • Noh NJ, Son Y, Kim RH et al (2007) Biomass accumulations and the distribution of nitrogen and phosphorus within three Quercus acutissima stands in central Korea. J Plant Biol 50:461–466

    Article  CAS  Google Scholar 

  • Ostonen I, Lõhmus K, Lasn R (1999) The role of soil conditions in fine root ecomorphology in norway spruce (Picea abies (L.) Karst.). Plant Soil 208:283–292

    Article  CAS  Google Scholar 

  • Ostonen I, Püttsepp Ü, Biel C, Alberton O, Bakker MR, Lõhmus K, Majdi H, Metcalfe D, Olsthoorn AFM, Pronk A, Vanguelova E, Weih M, Brunner I (2007a) Specific root length as an indicator of environmental change. Plant Biosyst 14:426–442

    Article  Google Scholar 

  • Ostonen I, Lõhmus K, Helmisaari H-S, Truu J, Meel S (2007b) Fine root morphological adaptations in Scots pine, Norway spruce and silver birch along a latitudinal gradient in boreal forests. Tree Physiol 27:1627–1634

    Article  PubMed  Google Scholar 

  • Ostonen I, Tedersoo L, Suvi T, Lõhmus K (2009) Does a fungal species drive ectomycorrhizal root traits in Alnus spp.? Can J Forest Res 39:1787–1796

    Article  CAS  Google Scholar 

  • Ostonen I, Helmisaari H-S, Borken W, Tedersoo L, Kukumagi M, Bahram M, Lindroos A-J, Nojd P, Uri V, Merila P, Asi E, Lohmus K (2011) Fine root foraging strategies in Norway spruce forests across a European climate gradient. Glob Chang Biol 17:3620–3632

    Article  Google Scholar 

  • Pearcy RW, Sims DA (1994) Photosynthetic acclimation to changing light environments: scaling from the leaf to the Ahole plant. In: Caldwell MM, Pearcy RW (eds) Exploitation of Environmental Heterogeneity by Plants: Ecophysiological Processes Above- and Belowground. Academic Press, San Diego, pp 145–174

    Chapter  Google Scholar 

  • Polglase PJ, Attiwill PM (1992) Nitrogen and phosphorus cycling in relation to stand age of Eucalyptus regnans F. Muell.: I. return from plant to soil. Plant Soil 142:156–166

    Google Scholar 

  • Pregitzer KS, DeForest JL, Burton AJ, Allen MF, Ruess RW, Hendrick RL (2002) Fine root architecture of nine North American trees. Ecol Monogr 72:93–309

    Article  Google Scholar 

  • Priha O, Hallantie T, Smolander A (1999) Comparing microbial biomass, denitrification enzyme activity, and numbers of nitrifiers in the rhizospheres of Pinus sylvestris, Picea abies and Betula pendula seedlings by microscale methods. Biol Fertil Soils 30:14–19

    Article  CAS  Google Scholar 

  • Reich PB, Walters MB, Tjoelker MG, Vanderklein D, Buschena C (1998) Photosynthesis and respiration rates depend on leaf and root morphology and nitrogen concentration in nine boreal tree species differing in relative growth rate. Funct Ecol 12:395–405

    Article  Google Scholar 

  • Richardson AE, Barea JM, McNeill AM, Prigent-Combaret C (2009) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321:305–339

    Article  CAS  Google Scholar 

  • Richter AK, Walthert L, Frossard E, Brunner I (2007) Does low soil base saturation affect fine root properties of european beech (Fagus sylvatica L.)? Plant Soil 298:69–79

    Article  CAS  Google Scholar 

  • Rosenvald K, Ostonen I, Truu M, Truu J, Uri V, Vares A, Lõhmus K (2011a) Fine-root rhizosphere and morphological adaptations to site conditions in interaction with tree mineral nutrition in young silver birch (Betula pendula Roth.) stands. Eur J For Res 130:1055–1066

    Article  Google Scholar 

  • Rosenvald K, Kuznetsaova T, Lõhmus K, Ostonen I, Truu M, Truu J, Uri V (2011b) Dynamics of rhizosphere processes and soil formation in a chronosequence of silver birch stands on reclaimed oil shale post-mining areas. Ecol Eng 37:1027–1034

    Article  Google Scholar 

  • Rousseau JVD, Sylvia DM, Fox AJ (1994) Contribution of ectomycorrhiza to the potential nutrient-absorbing surface of pine. New Phytol 128:639–644

    Article  Google Scholar 

  • Sellin A, Kupper P (2006) Spatial variation in sapwood area to leaf area ratio and specific leaf area within a crown of silver birch. Trees 20:311–319

    Article  Google Scholar 

  • Siddiqui M, Shah A, Yaqoob S (2009) Chronosequence and crown strata effects on foliar nutrient concentrations in teak (Tectona grandis L.f) plantations. Pak J Bot 41:3023–3034

    CAS  Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis. Academic Press, San Diego

    Google Scholar 

  • Sun Y, Gu J-C, Zhuang H-F, Wang Z-Q (2010) Effects of ectomycorrhizal colonization and nitrogen fertilization on morphology of root tips in a Larix gmelinii plantation in northeastern China. Ecol Res 25:295–302

    Article  Google Scholar 

  • Taylor JH, Peterson CA (2005) Ectomycorrhizal impacts on nutrient uptake pathways in woody roots. New Forest 30:203–214

    Article  Google Scholar 

  • Taylor AFS, Martin F, Read DJ (2000) Fungal diversity in ectomycorrhizal communities of Norway spruce [Picea abies (L.) Karst.] and beech (Fagus sylvatica L.) along north-south transects in Europe. In: Schultze E-D (ed) Carbon and Nitrogen Cycling in European Forest Ecosystems. Springer, Heidelberg, pp 343–365

    Google Scholar 

  • Tedersoo L, Kõljalg U, Hallenberg N, Larsson KH (2003) Fine scale distribution of ectomycorrhizal fungi and roots across substrate layers including coarse woody debris in a mixed forest. New Phytol 159:153–165

    Article  CAS  Google Scholar 

  • Tedersoo L, Sadam A, Zambrano M, Valencia R, Bahram M (2010a) Low diversity and high host preference of ectomycorrhizal fungi in Western Amazonia, a neotropical biodiversity hotspot. ISME J 4:465–471

    Article  PubMed  Google Scholar 

  • Tedersoo L, May TW, Smith ME (2010b) Ectomycorrhizal lifestyle in fungi: global diversity, distribution, and evolution of phylogenetic lineages. Mycorrhiza 4:217–263

    Article  Google Scholar 

  • Thomas SC (2010) Photosynthetic capacity peaks at intermediate size in temperate deciduous trees. Tree Physiol 30:555–573

    Article  PubMed  Google Scholar 

  • Trocha LK, Mucha J, Eissenstat DM, Reich PB, Oleksyn J (2010) Ectomycorrhizal identity determines respiration and concentrations of nitrogen and non-structural carbohydrates in root tips: a test using Pinus sylvestris and Quercus robur saplings. Tree Physiol 30:648–654

    Google Scholar 

  • Twieg BD, Durall DM, Simard SW (2007) Ectomycorrhizal fungal succession in mixed temperate forests. New Phytol 176:437–447

    Article  PubMed  Google Scholar 

  • Uri V, Lõhmus K, Ostonen I, Tullus H, Lastik R, Vildo M (2007) Biomass production, foliar and root characteristics and nutrient accumulation in young silver birch (Betula pendula Roth.) stand growing on abandoned agricultural land. Eur J For Res 126:495–506

    Article  Google Scholar 

  • Uri V, Varik M, Aosaar J, Kanal A, Kukumägi M, Lõhmus K (2012) Biomass production and carbon sequestration in a fertile silver birch (Betula pendula Roth) forest chronosequence. Forest Ecol Manag 267:117–126

    Article  Google Scholar 

  • Weiskittel AR, Hailemariam T, Wilson DS, Maguire DA (2008) Sources of within- and between-stand variability in specific leaf area of three ecologically distinct conifer species. Ann For Sci 65:103

    Article  Google Scholar 

  • White LL, Zak DR, Barnes BV (2004) Biomass accumulation and soil nitrogen availability across an 87-year-old Populus grandidentata chronosequence. For Ecol Manag 191:121–127

    Article  Google Scholar 

  • Withington JM, Reich PB, Oleksyn J, Eissenstat DM (2006) Comparison of structure and life span in roots and leaves among temperate trees. Ecol Monogr 76:381–397

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by Grants No. 7792, 7452, and 7069 of the Estonian Science Foundation, by Target Projects No. SF0180127s08 and SF0180025s12 of the Ministry of Education and Research of the Republic of Estonia and by the EU through the European Regional Development Fund (Centre of Excellence ENVIRON; molecular analyses of EcM fungal species were partly supported by Centre of Excellence FIBIR). We thank Mr. Ilmar Part for linguistic revision of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katrin Rosenvald.

Additional information

Communicated by R. Matyssek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosenvald, K., Ostonen, I., Uri, V. et al. Tree age effect on fine-root and leaf morphology in a silver birch forest chronosequence. Eur J Forest Res 132, 219–230 (2013). https://doi.org/10.1007/s10342-012-0669-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10342-012-0669-7

Keywords

Navigation