Skip to main content
Log in

Chloroplast DNA polymorphism of an exotic P. mugo Turra population introduced to seaside spit of Kursiu Nerija in Lithuania

European Journal of Forest Research Aims and scope Submit manuscript

Abstract

The aim of this study was to elucidate the introduction history of P. mugo in the unique landscape of the Lithuanian seaside spit of Kursiu Nerija by assessing its genetic structure and the genetic diversity. The individuals were sampled in 12 populations within an area of 3 km × 50 km along the Lithuanian part of Kursiu Nerija. P. mugo was introduced over 200 years ago to prevent sand erosion by establishing a forest cover. Chloroplast DNA polymorphism of 220 individuals of P. mugo together with 18 P. sylvestris and 11 putative P. sylvestris × P. mugo hybrids was assessed by the aid of five microsatellite markers. The standard intra-population diversity indexes were calculated. The intra-specific variation between distinct morphotypes as well as the population differentiation within the most spread P. mugo ssp. rotundata morphotype was assessed based on the haplotype frequencies by hierarchical AMOVA, GST/RST test, UPGMA clustering and PCA methods. The genetic diversity of P. mugo in Kursiu Nerija was high (He = 0.95; 83 different haplotypes). All except one of the P. mugo populations sampled contained a notable share of private haplotypes. AMOVA revealed high intra-specific diversity but low differentiation between the P. mugo populations. Most of the haplotypic variance was within populations. The UPGMA clustering produced groups more corresponding to the sub-species morphotypes than the geography of the populations. There was no geographical pattern of reduction in genetic diversity towards the younger plantations. A strong candidate for a species-specific DNA marker was found. After several events of introduction, the genetic diversity of P. mugo in Kursiu Nerija is very high and is structured based on the sub-species morphotypes rather than geography. The high frequency of shared and notable frequency of private haplotypes in most of the populations indicate that the major part of the P. mugo material originates from a number of geographically and genetically related sources, which more likely are introductions from abroad that the local collections. The high frequency of private haplotypes in the northernmost populations leaves a possibility for minor introductions from other genetically distinct sources. The absence of private haplotypes in one of the sampled populations indicates the use of local seed collections. The large number of shared haplotypes provides a strong evidence for a geneflow among the P. mugo taxa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Anderson E, Hubricht L (1938) Hybridization in Tradescantia 111. The evidence for introgressive hybridization. Am J Bot 25:396–402

    Article  Google Scholar 

  • Boratyńska K, Boratyński A (2007) Taxonomic differences among closely related pines Pinus sylvestris, P. mugo, P. uncinata, P. rotundata and P. uliginosa as revealed in needle sclerenchyma cells. Flora 202:555–569

    Article  Google Scholar 

  • Boratyński A, Boratyńska K, Lewandowski A (2003) Evidence of the possibility of natural reciprocal crosses between Pinus sylvestris and P. uliginosa based on the phenology of reproductive organs. Flora 198:377–388

    Article  Google Scholar 

  • Christensen KI (1987a) Taxonomic revision of the Pinus mugo complex and P. × rhaetica (P. mugo × sylvestris) (Pinaceae). Nord J Bot 7:383–408

    Article  Google Scholar 

  • Christensen KI (1987b) A morphometric study of the Pinus mugo Turra complex and its natural hybridization with P. sylvestris L. (Pinaceae). Feddes Repert 98:623–635

    Article  Google Scholar 

  • Christensen KI, Dar GH (1997) A morphometric analysis of spontaneous and artificial hybrids of Pinus mugo x sylvestris (Pinacae). Nord J Bot 17:77–86

    Article  Google Scholar 

  • Danusevičius D, Marozas V, Brazaitis G, Petrokas R (2012) Spontaneous hybridization between Pinus mugo (Turra) and Pinus sylvestris (L.) at the Lithuanian sea-side: a morphological survey. Sci World J 11. doi:10.1100/2012/172407

  • Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12(1):13–15

    Google Scholar 

  • Dzialuk A, Muchewicz E, Boratynski A, Montserrat JM, Boratynska K, Burczyk J (2009) Genetic variation of Pinus uncinata (Pinaceae) in the Pyrenees determined with cpSSR markers. Plant Syst Evol 277:197–205

    Article  CAS  Google Scholar 

  • Eliades N-G, Eliades DG (2009) User’s manual for HAPLOTYPE ANALYSIS: software for analysis of haplotypes data. Forest genetics and forest tree breeding, Georg-Augst University Goettingen, Germany. URL http://www.uni-goettingen.de/en/134935.html

  • Excoffier L, Lischer H (2010) ARLEQUIN VER 3.5.1.2 USER MANUAL (2010) Computational and molecular population genetics lab (CMPG). Institute of Ecology and Evolution University of Berne, Baltzerstrasse 6, 3012 Bern, Switzerland

  • Goldstein DB, Linares AR, Cavallisforza LL, Feldman MW (1995) An evaluation of genetic distances for use with microsatellite loci. Genetics 139:463–471

    PubMed  CAS  Google Scholar 

  • Hamernik J, Musil I (2007) The Pinus mugo complex—its structuring and general overview of the used nomenclature. J For Sci 53:253–266

    Google Scholar 

  • Heiser CB (1949) Natural hybridization with particular reference to introgression. Bot Rev (Lanc) 15:645–687

    Article  Google Scholar 

  • Heiser CB (1973) Introgression re-examined. Bot Rev (Lanc) 39:347–366

    Article  Google Scholar 

  • Heuertz M, Teufel J, Gonzalez-Martınez SC, Soto A, Fady B, Alia R, Vendramin GG (2010) Geography determines genetic relationships between species of mountain pine (Pinus mugo complex) in western Europe. J Biogeogr 37:541–556

    Article  Google Scholar 

  • Jørgensen H (2006) NOBANIS—Invasive Alien Species Fact Sheet—Pinus mugo. From: Online database of the North European and Baltic Network on Invasive Alien Species—NOBANIS. www.nobanis.org

  • Kormutak A, Ostrolucka M, Vookova B, Pretova A (2005) Artificial hybridization of Pinus sylvestris L. and Pinus mugo Turra. Acta Biol Cracoviensia Ser Bot 47:129–134

    Google Scholar 

  • Kormutak A, Demankova B, Gmory D (2008) Spontaneous hybridization between Pinus sylvestris L. and P. mugo Turra in Slovakia. Silvae Genet 57(2):76–82

    Google Scholar 

  • Lewandowski A, Boratynski A, Mejnartowicz L (2000) Allozyme investigations on the genetic differentiation between closely related pines–Pinus sylvestris L., P. mugo Turra, P. uncinata Ramond ex DC. and P. uliginosa Neuman (Pinaceae). Plant Syst Evol 221:15–24

    Article  CAS  Google Scholar 

  • Marcet E (1967) Über den Nachweis spontaner Hybriden von Pinus mugo Turra und Pinus sylvestris L. Aufgrund von Nadelmerkmalen. Berichte Schweizer Botanischen Gesellschaft 77:314–361

    Google Scholar 

  • Mar-Möller C (1965) Vore skovträer og deres dyrkning. Copenhagen

  • Miller MP (1997) Tools for population genetic analyses (TFPGA) version 1.3. A Windows® program for the analysis of allozyme and molecular population genetic data. Department of Biological Sciences, Box 5640, Northern Arizona University, Flagstaff, AZ 86011-5640

  • Monteleone I, Ferrazzini D, Belletti P (2006) Effectiveness of neutral RAPD markers to detect genetic divergence between the subspecies uncinata and mugo of Pinus mugo Turra. Silva Fennica 40(3):391–406

    Google Scholar 

  • Morgante M, Felice N, Vendramin GG (1998) Analysis of hypervariable chloroplast microsatellites. In: A Karp (ed) Pinus halepensis reveals a dramatic bottleneck. Molecular tools for screening biodiversity: plants and animals. Chapman and Hall, London, pp 402–412

  • Mousadik A, Petit RJ (1996) High level of genetic differentiation for allelic richness among populations of the argan tree [Argania spinosa (L) Skeels] endemic to Morocco. Theor Appl Genet 92:832–839

    Article  Google Scholar 

  • Müller PE (1887) Om Bjergfyrren (Pinus montana, Mill.). Et Forsög i anvendt Plantegeografi. Copenhagen

  • Naydenov K, Senneville S, Beaulieu J, Tremblay F, Bousquet J (2007) Glacial vicariance in Eurasia: mitochondrial DNA evidence from Scots pine for a complex heritage involving genetically distinct refugia at mid-northern latitudes and in Asia Minor. BMC Evol Biol 7:233. doi:10.1186/1471-2148-7-233

    Article  PubMed  Google Scholar 

  • Neale DB, Sederoff RR (1989) Paternal inheritance of chloroplast DNA and maternal inheritance of mitochondrial DNA in loblolly pine. Theor Appl Genet 77:212–216

    Google Scholar 

  • Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci USA 70:3321–3323

    Article  PubMed  CAS  Google Scholar 

  • Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Petit RJ, El Mousadik A, Pons O (1998) Identifying populations for conservation on the basis of genetic markers. Conserv Biol 12:844–855

    Google Scholar 

  • Pons O, Petit RJ (1996) Measuring and testing genetic differentiation with ordered versus unordered alleles. Genetics 144:1237–1245

    PubMed  CAS  Google Scholar 

  • Reynolds J, Weir BS, Cockerham CC (1983) Estimation of the coancestry coefficient: basis for a short-term genetic distance. Genetics 105:767–779

    PubMed  CAS  Google Scholar 

  • Robledo-Arnuncio JJ, Collada C, Alıa R, Gil L (2005) Genetic structure of mountane isolates of Pinus sylvestris L. In a Mediterranean refugial area. J Biogeogr 32:595–605

    Article  Google Scholar 

  • Schmid J (2000) DNA- und Isoenzym-Polymorphismen in Populationen des Berg-Kiefern-Komplex, Pinus mugo Turra s.l. PhD Thesis, Albert-Ludwigs-University, Freiburg

  • Strakauskaite N (2004) Klaipeda and the Curonian spit guide. R. Paknio publishing, Klaipeda, p 80. ISBN 9986-830-87-7

  • Vendramin GG, Lelli L, Rossi P, Morgante M (1996) A set of primers for the amplification of 20 chloroplast microsatellites in Pinaceae. Mol Ecol 5:595–598

    Article  PubMed  CAS  Google Scholar 

  • Wachowiak W, Prus-Głowacki W (2008) Hybridisation processes in sympatric populations of pines Pinus sylvestris L., P. mugo Turra and P. uliginosa Neumann. Plant Syst Evol 271:29–40

    Article  Google Scholar 

  • Wachowiak W, Bączkiewicz A, Celiński K, Prus-Głowacki W (2004) Species-specific chloroplast DNA polymorphism in the trnV-rbcL region in Pinus sylvestris and P. mugo. Dendrobiology 51:67–72

    CAS  Google Scholar 

Download references

Acknowledgments

This research was funded by a grant (LEK-11/2010) from the Research Council of Lithuania. The authors also want to express appreciation to the staff of Kursiu Nerija National Park for the field guidance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Darius Danusevičius.

Additional information

Communicated by C. Ammer.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 775 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Danusevičius, D., Buchovska, J., Stanys, V. et al. Chloroplast DNA polymorphism of an exotic P. mugo Turra population introduced to seaside spit of Kursiu Nerija in Lithuania. Eur J Forest Res 132, 137–150 (2013). https://doi.org/10.1007/s10342-012-0663-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10342-012-0663-0

Keywords

Navigation