Skip to main content

Advertisement

Log in

Forest structure and soil fertility determine internal stem morphology of Pedunculate oak: a modelling approach using boosted regression trees

  • Original Paper
  • Published:
European Journal of Forest Research Aims and scope Submit manuscript

Abstract

This study aims at the explanation of internal stem morphology of vital (co)dominant Pedunculate oak (Quercus robur L.) trees in homogeneous even-aged high-forests by the factors tree age, forest structure and site quality, using boosted regression trees as a powerful modelling technique. The study area covers the region of Flanders (Northern Belgium), which is characterised by the absence of strong topographic and climatic gradients. For 76 adult sample trees covering the entire productivity range of Pedunculate oak, morphological characteristics were derived from measurements of ring width or heartwood area on wood cores. Forest structure, soil physicochemical properties, humus quality, vegetation indices and litter nutrient contents were quantified at each sample location. Model predictive performance and generality are good. Tree age effects correspond to expected trends in age-related radial growth and heartwood portion. Even if management of oak trees in even-aged high-forests is rather similar over Flanders, forest structure is the most important factor determining ring width, followed by soil fertility. Heartwood portion is determined by soil fertility and crown structure. Effects of topsoil and humus physicochemical characteristics, litter nutrient contents and water supply mainly confirm autecological knowledge on oak. However, variables related to soil water availability are only occasionally relevant, and always of lower importance than soil fertility. The low importance of water availability in the models contradicts results from other studies, and the potential effect of confounding is discussed. The observed growth reduction at low litter N/P ratios might be indirectly linked to early litterfall.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

BRT:

Boosted regression trees

DBH:

Diameter at breast height

EW, mEW:

(mean) earlywood width

HW:

Heartwood area

HWP:

Heartwood portion

LW, mLW:

(mean) latewood width

RW, mRW, sdRW:

(mean/standard deviation of) ring width

SW:

Sapwood area

References

  • Aertsen W, Kint V, Van Orshoven J, Özkan K, Muys B (2010) Comparing and ranking of different modelling techniques for predicting site index in Mediterranean mountain forests. Ecol Model 221:1119–1130

    Article  Google Scholar 

  • Aertsen W, Kint V, Van Orshoven J, Muys B (2011) Evaluation of modelling techniques for forest site productivity prediction in contrasting ecoregions using stochastic multicriteria acceptability analysis (SMAA). Environ Modell Softw 26:929–937

    Article  Google Scholar 

  • Assmann E (1970) The principles of forest yield study. Pergamon Press, Oxford

    Google Scholar 

  • Barbaroux C, Bréda N (2002) Contrasting distribution and seasonal dynamics of carbohydrate reserves in stem wood of adult ring-porous sessile oak and diffuse-porous beech trees. Tree Physiol 22:1201–1210

    Article  PubMed  CAS  Google Scholar 

  • Bary-Lenger A, Nebout J (1993) Le chêne. Editions du Perron, Liège

    Google Scholar 

  • Becker M, Lévy G (1990) Le point sur l’écologie comparée du chêne sessile et du chêne pédonculé. Rev For Fr 17:148–154

    Article  Google Scholar 

  • Bergès L, Dupouey JL, Franc A (2000) Long-term changes in wood density and radial growth of Quercus petraea Liebl. in northern France since the middle of the nineteenth century. Trees-Struct Funct 14:398–408

    Article  Google Scholar 

  • Bergès L, Chevalier R, Dumas Y, Franc A, Gilbert JM (2005) Sessile oak (Quercus petraea Liebl.) site index variations in relation to climate, topography and soil in even-aged high-forest stands in northern France. Ann For Sci 62:391–402

    Article  Google Scholar 

  • Bergès L, Nepveu G, Franc A (2008) Effects of ecological factors on radial growth and wood density components of Sessile oak (Quercus petraea Liebl.) in northern France. Forest Ecol Manag 255:567–579

    Article  Google Scholar 

  • Bergmann W (1993) Ernährungsstörungen bei Kulturpflanzen. Gustav Fischer Verlag, Stuttgart

    Google Scholar 

  • Bleeker A, Van Deursen W (2007) Modelling the nitrogen deposition to afforested systems. In: Heil G, Muys B, Hansen K (eds) Environmental effects of afforestation in Nort-Western Europe. Springer, Dordrecht, pp 109–128

    Chapter  Google Scholar 

  • Bréda N, Granier A (1996) Intra- and interannual variations of transpiration, leaf area index and radial growth of a Sessile oak stand (Quercus petraea). Ann For Sci 53:521–536

    Article  Google Scholar 

  • Cruiziat P, Cochard H, Améglio T (2002) Hydraulic architecture of trees: main concepts and results. Ann For Sci 59:723–752

    Article  Google Scholar 

  • De Vos B, Van Meirvenne M, Quataert P, Deckers J, Muys B (2005) Predictive quality of pedotransfer functions for estimating bulk density of forest soils. Soil Sci Soc Am J 69:500–510

    Article  Google Scholar 

  • De Vries W, Vel E, Reinds G, Deelstra H, Klap J, Leeters E, Hendriks C, Kerkvoorden M, Landmann G, Herkendell J, Haussmann T, Erisman J (2003) Intensive monitoring of forest ecosystems in Europe—1. Objectives, set-up and evaluation strategy. Forest Ecol Manag 174:77–95

    Article  Google Scholar 

  • De’ath G (2007) Boosted trees for ecological modeling and prediction. Ecology 88:243–251

    Article  PubMed  Google Scholar 

  • Drobyshev I, Linderson H, Sonesson K (2007) Relationship between crown condition and tree diameter growth in southern Swedish oaks. Environ Monit Assess 128:61–73

    Article  PubMed  Google Scholar 

  • Elith J, Leathwick JR, Hastie T (2008) A working guide to boosted regression trees. J Anim Ecol 77:802–813

    Article  PubMed  CAS  Google Scholar 

  • Farinotti S, Larousse J (1991) Production et qualité des chênes en Sologne bourbonnaise: vers une optimisation de la gestion des peuplements irréguliers. ENITEF report

  • Fonti P, García-González I (2008) Earlywood vessel size of oak as a potential proxy for spring precipitation in mesic sites. J Biogeogr 35:2249–2257

    Article  Google Scholar 

  • Friedman JH (2002) Stochastic gradient boosting. Comput Stat Data Anal 38:367–378

    Article  Google Scholar 

  • Göransson H, Ingerslev M, Wallander H (2008) The vertical distribution of N and K uptake in relation to root distribution and root uptake capacity in mature Quercus robur, Fagus sylvatica and Picea abies stands. Plant Soil 306:129–137

    Article  Google Scholar 

  • Guilley E, Herve JC, Nepveu G (2004) The influence of site quality, silviculture and region on wood density mixed model in Quercus petraea Liebl. Forest Ecol Manag 189:111–121

    Article  Google Scholar 

  • Hagen-Thorn A, Varnagiryte I, Nihlgard B, Armolaitis K (2006) Autumn nutrient resorption and losses in four deciduous forest tree species. Forest Ecol Manag 228:33–39

    Article  Google Scholar 

  • Hein S, Dhôte JF (2006) Effect of species composition, stand density and site index on the basal area increment of oak trees (Quercus sp.) in mixed stands with beech (Fagus sylvatica L.) in northern France. Ann For Sci 63:457–467

    Article  Google Scholar 

  • Helama S, Laanelaid A, Raisio J, Tuomenvirta H (2009) Oak decline in Helsinki portrayed by tree-rings, climate and soil data. Plant Soil 319:163–174

    Article  CAS  Google Scholar 

  • Hill M, Mountford J, Roy B, Bunce R (1999) Ellenberg’s indicator values for British plants. Institute of Terrestrial Ecology, Huntingdon

    Google Scholar 

  • Jabiol B, Brêthes A, Ponge J, Toutain F, Brun J (2007) L’Humus sous toutes ses formes, 2nd edn. AgoParisTech, Nancy

    Google Scholar 

  • Jansen JJ, Sevenster J, Faber PJ (1996) Opbrengsttabellen voor belangrijke boomsoorten in Nederland. IBN-DLO, Wageningen

    Google Scholar 

  • Jonard M, Andre F, Dambrine E, Ponette Q, Ulrich E (2009) Temporal trends in the foliar nutritional status of the French, Walloon and Luxembourg broad-leaved plots of forest monitoring. Ann For Sci 66:412

    Article  Google Scholar 

  • Killingbeck KT, May JD, Nyman S (1990) Foliar senescence in an Aspen (Populus tremuloides) clone—the response of element resorption to interramet variation and timing of abscission. Can J For Res 20:1156–1164

    Article  CAS  Google Scholar 

  • Kint V, Van Meirvenne M, Nachtergale L, Geudens G, Lust N (2003) Spatial methods for quantifying forest stand structure development: a comparison between nearest-neighbor indices and variogram analysis. For Sci 49:36–49

    Google Scholar 

  • Kint V, De Wulf R, Lust N (2004) Evaluation of sampling methods for the estimation of structural indices in forest stands. Ecol Model 180:461–476

    Article  Google Scholar 

  • Lebourgeois F, Cousseau G, Ducos Y (2004) Climate-tree-growth relationships of Quercus petraea Mill. stand in the forest of Berce (“Futaie des Clos”, Sarthe, France). Ann For Sci 61:361–372

    Article  Google Scholar 

  • Masson G (2005) Autécologie des essences forestières. Tec & Doc, Paris

    Google Scholar 

  • Meadows JS, Hodges JD (2002) Sapwood area as an estimator of leaf area and foliar weight in cherrybark oak and green ash. Forest Sci 48:69–76

    Google Scholar 

  • Moisen G, Freeman E, Blackard J, Frescino T, Zimmermann N, Edwards T (2006) Predicting tree species presence and basal area in Utah: a comparison of stochastic gradient boosting, generalized additive models, and tree-based methods. Ecol Model 199:176–187

    Article  Google Scholar 

  • Mossor-Pietraszewska T (2001) Effect of aluminium on plant growth and metabolism. Acta Biochim Pol 48:673–686

    PubMed  CAS  Google Scholar 

  • Muys B (1995) The influence of tree species on humus quality and nutrient availability on a regional scale (Flanders, Belgium). In: Nilsson LO, Hüttl RF, Johansson UT (eds) Nutrient uptake and cycling in forest ecosystems. Kluwer Academic Publishers, Dordrecht, pp 649–660

    Chapter  Google Scholar 

  • Muys B, Lust N, Granval P (1992) Effects of grassland afforestation with different tree species on earthworm communities, litter decomposition and nutrient status. Soil Biol Biochem 24:1459–1466

    Article  Google Scholar 

  • Nepveu G (1993) The possible status of wood quality in oak breeding programs (Quercus petraea Liebl and Quercus robur L.). Ann For Sci 50:388s–394s

    Article  Google Scholar 

  • Paulo MJ, Stein A, Tomé M (2002) A spatial statistical analysis of Cork oak competition in two Portuguese silvopastoral systems. Can J For Res 32:1893–1903

    Article  Google Scholar 

  • Ponge J, Chevalier R, Loussot P (2002) Humus index: an integrated tool for the assessment of forest floor and topsoil properties. Soil Sci Soc Am J 66:1996–2001

    Article  CAS  Google Scholar 

  • Rampelberg S, Van Der Aa B, Deckers J (1997) Soil morphology and soil water regime of loess soils under oak in the Meerdaal forest, Belgium. Agr For Meteorol 84:51–59

    Article  Google Scholar 

  • Richardson SJ, Allen RB, Doherty JE (2008) Shifts in leaf N: P ratio during resorption reflect soil P in temperate rainforest. Funct Ecol 22:738–745

    Article  Google Scholar 

  • Ridgeway G (2007) Generalized boosted models: a guide to the gbm package. http://www.cran.r-project.org/web/packages/gbm/index.html. Accessed 01 March 2010

  • Rozas V (2001) Detecting the impact of climate and disturbances on tree-rings of Fagus sylvatica L. and Quercus robur L. in a lowland forest in Cantabria, northern Spain. Ann For Sci 58:237–251

    Article  Google Scholar 

  • Schapire R (2003) The boosting approach to machine learning: an overview. Lect Notes Stat 171:149–171

    Google Scholar 

  • Teepe R, Dilling H, Beese F (2003) Estimating water retention curves of forest soils from soil texture and bulk density. J Plant Nutr Soil Sci 166:111–119

    Article  CAS  Google Scholar 

  • Thomas F, Blank R, Hartmann G (2002) Abiotic and biotic factors and their interactions as causes of oak decline in Central Europe. For Pathol 32:277–307

    Article  Google Scholar 

  • Thuiller W, Lafourcade B, Engler R, Araujo M (2009) BIOMOD—a platform for ensemble forecasting of species distributions. Ecography 32:369–373

    Article  Google Scholar 

  • Timbal J, Aussenac G (1996) An overview of ecology and silviculture of indigenous oaks in France. Ann For Sci 53:649–661

    Article  Google Scholar 

  • Ulrich B (1983) Soil acidity and its relations to acid deposition. In: Ulrich B, Pankrath J (eds) Effects of accumulation of air pollutants in forest ecosystems. Kluwer Academic Publishers, Dordrecht, pp 127–146

    Chapter  Google Scholar 

  • Vansteenkiste D, Van Acker J, Stevens M, Le Thiec D, Nepveu G (2007) Composition, distribution and supposed origin of mineral inclusions in sessile oak wood—consequences for microdensitometrical analysis. Ann For Sci 64:11–19

    Article  CAS  Google Scholar 

  • Zhang SY (1995) Effect of growth rate on wood specific gravity and selected mechanical properties in individual species from distinct wood categories. Wood Sci Technol 29:451–465

    Article  CAS  Google Scholar 

  • Zimmermann MH (1983) Xylem structure and the ascent of sap. Springer, New York

    Google Scholar 

  • Zobel B, Sprague J (1998) Juvenile wood in forest trees. Springer Series in Wood Science

Download references

Acknowledgments

This study has been conducted within the context of the SimForTree project (http://www.SimForTree.be; IWT-SBO contract 060032). The authors wish to thank Joost Malliet, Marc De Vrieze, Sofie Bruneel and Jasper Goffin for their support to this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent Kint.

Additional information

Communicated by T. Seifert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kint, V., Vansteenkiste, D., Aertsen, W. et al. Forest structure and soil fertility determine internal stem morphology of Pedunculate oak: a modelling approach using boosted regression trees. Eur J Forest Res 131, 609–622 (2012). https://doi.org/10.1007/s10342-011-0535-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10342-011-0535-z

Keywords

Navigation