European Journal of Forest Research

, Volume 130, Issue 6, pp 911–934 | Cite as

Aboveground tree volume and phytomass prediction equations for forest species in Italy

  • Giovanni Tabacchi
  • Lucio Di Cosmo
  • Patrizia Gasparini
Original Paper

Abstract

In this article, we present equations derived for the prediction of the aboveground tree volume and phytomass for twenty-five of the most important forest species growing in Italy. These equations result from ongoing research aiming to fill a gap in the models available at the national scale. With regard to volume, the results are particularly important for thirteen species or groups of species that were once scaled with models, conventionally assumed as reference models, available for other species. In Italy, phytomass models had never been constructed at the national level before. For any single tree, specific equations allow estimations of the following tree components to be made: stem and large branches (for either volume or phytomass), small branches (phytomass), stump (phytomass) and the whole tree phytomass. The models have been constructed on the basis of nearly 1,300 sampling units (sample trees). Although these equations must be considered intermediate results of the ongoing research because only half the scheduled number of samples has been collected, they have already been used in the practice, for example in the estimates reported in the recently published second national forest inventory.

Keywords

Volume functions Phytomass prediction equations Tree biomass Volume prediction equations Aboveground tree phytomass 

References

  1. Carvalho JP, Parresol BR (2003) Additivity in tree biomass components of Pyrenean oak (Quercus pyrenaica Willd.). For Ecol Manage 179:269–276CrossRefGoogle Scholar
  2. Castellani C, Scrinzi G, Tabacchi G, Tosi V (1984) Inventario forestale nazionale italiano—Tavole di cubatura a doppia entrata. Ministero dell’Agricoltura e delle Foreste, Istituto Sperimentale per l’Assestamento Forestale e per l’Alpicoltura, TrentoGoogle Scholar
  3. Castellani C, Scrinzi G, Tabacchi G, Tosi V (1988) Inventario forestale nazionale Italiano. Sintesi metodologica e risultati. Rappresentazioni cartografiche. Ministero dell’Agricoltura e delle Foreste, Istituto Sperimentale per l’Assestamento Forestale e per l’Alpicoltura, TrentoGoogle Scholar
  4. Cormier K, Reich R, Czaplewski R, Bechtold W (1992) Evaluation of weighted regression and sample size developing a taper model for loblolly pine. For Ecol Manage 53:65–76CrossRefGoogle Scholar
  5. Corona P, Ferrara A (1991) Measuring techniques for assessing basal area increment of forest stands. In: Proceedings of IUFRO conference on forest inventories in Europe with special reference to statistical methods. Birmensdorf, Switzerland, pp 70–81Google Scholar
  6. Cunia T, Briggs RD (1984) Forcing additivity of biomass tables: some empirical results. Can J For Res 14:376–384CrossRefGoogle Scholar
  7. Del Favero R, Tabacchi G (1984) Su alcuni aspetti metodologici dell’analisi della regressione con riferimento ad applicazioni di interesse dendrometrico. Ann Ist Sper Ass For Alp, Trento, pp 105–139Google Scholar
  8. Demaerschalk J, Kozak A (1974) Suggestions and criteria for more effective regression sampling. Can J For Res 4:341–348CrossRefGoogle Scholar
  9. Demaerschalk J, Kozak A (1975) Suggestions and criteria for more effective regression sampling. Can J For Res 5:496–497CrossRefGoogle Scholar
  10. Eamus D, McGuinness K, Burrows W (2000) Review of allometric relationships for estimating woody biomass for Queensland, the Northern Territory and Western Australia. National Carbon Accounting System, Tecnichal Report No. 5A. Australian Greenhouse Office, CanberraGoogle Scholar
  11. Fattorini L, Gasparini P, Nocetti M, Tabacchi G, Tosi V (2005) Above-ground tree phytomass prediction and preliminary shrub phytomass assessment in the forest stands in Trentino. In Salvadori C, Ambrosi P (a cura di), 2005 – EFOMI Valutazione ecologica di cenosi forestali sottoposte a monitoraggio integrato. Museo Tridentino di Scienze Naturali, Trento. Studi Trent Sci Nat, Acta Biol 81 (2004), Suppl. 1: 276. Available via DIALOG. http://www.mtsn.it/pubblicazioni/5/actaB81s1/06.pdf
  12. Garson D (2008) Statnotes: topics in multivariate analysis. Quantitative methods, regression analysis. In: Quantitative research in public administration. NC State University. Available via DIALOG. http://faculty.chass.ncsu.edu/garson/PA765/regress.htm
  13. INFC (2009) I caratteri quantitativi 2005 - parte 1, vers. 2. Autori Gasparini P, De Natale F, Di Cosmo L, Gagliano C, Salvadori I, Tabacchi G, Tosi V. Inventario Nazionale delle Foreste e dei Serbatoi Forestali di Carbonio. MiPAAF-Ispettorato Generale Corpo Forestale dello Stato, CRA-MPF Trento. Available via DIALOG. http://www.sian.it/inventarioforestale/jsp/documentazione.jsp
  14. Jenkins JC, Chojnacky DC, Health LS, Birdsey R (2003) National-scale biomass estimators for United States tree species. For Sci 49(1):12–35Google Scholar
  15. Jenkins JC, Chojnacky DC, Health LS, Birdsey R (2004) Comprehensive database of diameter-based biomass regressions for North American tree species. U.S. Department of Agriculture, Northeastern Forest Experiment Station, General Technical Report NE-319Google Scholar
  16. Keith H, Barrett D, Keenan R (2000) Review of allometric relationships for estimating woody biomass for New South Wales, the Australian Capital Territory, Victoria, Tasmania and South Australia. National Carbon Accounting System, Tecnichal Report No. 5B. Australian Greenhouse Office, CanberraGoogle Scholar
  17. Kitikidou K, Chatzilazarou G (2008) Estimating the sample size for fitting taper equations. J For Sci 54(4):176–182Google Scholar
  18. Lehtonen A, Mäkipää R, Heykkinen J, Sievänen R, Liski J (2004) Biomass expansion factors (BEFs) for Scots pine, Norway spruce and birch according to stand age for boreal forests. For Ecol Manage 188:211–224. doi:10.1016/j.foreco.2003.07.008 CrossRefGoogle Scholar
  19. Marshall P, Szikszai T, LeMay V, Kozak A (1995) Testing the distributional assumptions of least squares linear regression. For Chron 71(2):213–218Google Scholar
  20. Myers RH (1990) Classical and modern regression with applications, 2nd edn. The Duxbury advanced series in statistics and decision sciences. PWS-KENT Publishing Company, BostonGoogle Scholar
  21. Nocetti M, Bertini G, Fabbio G, Tabacchi G (2007) Equazioni di previsione della fitomassa arborea per i soprassuoli di cerro in avviamento ad altofusto in Toscana. Forest@ 4(2):204–212. Available via DIALOG. http://www.sisef.it/. Accessed 8 October 2009
  22. Parresol BR (1999) Assessing tree and stand biomass: a review with examples and critical comparisons. For Sci 45(4):573–593Google Scholar
  23. Philip M (1994) Measuring trees and forests. CAB International, LondonGoogle Scholar
  24. Schroeder P, Brown S, Mo J, Birdsey R, Cieszewski C (1997) Biomass estimation for temperate broadleaf forests of the United States using inventory data. For Sci 43(3):424–434Google Scholar
  25. Snowdon P, Eamus D, Gibbons P, Khanna P, Keith H, Raison J, Kirschbaum M (2000) Synthesis of allometrics, review of root biomass and design of future woody biomass sampling strategies. National Carbon Accounting System, Technical Report No. 17, Australian Greenhouse Office, CanberraGoogle Scholar
  26. Snowdon P, Raison J, Keith H, Ritson P, Grierson P, Adams M, Montagu K, Bi H, Burrows W, Eamus D (2002) Protocol for sampling tree and stands biomass. National Carbon Accounting System, Technical Report No. 31, Australian Greenhouse Office, CanberraGoogle Scholar
  27. Somogyi Z, Cienciala E, Mäkipää R, Muukkonen P, Lehtonen A, Weiss P (2006) Indirect methods of large-scale forest biomass estimation. Eur J For Res 126(2):197–207. doi:10.1007/s10342-006-0125-7 CrossRefGoogle Scholar
  28. Ter-Mikaelian MT, Korzukhin MD (1997) Biomass equations for sixty-five North American tree species. For Ecol Manage 97:1–24CrossRefGoogle Scholar
  29. Tritton LM, Hornbeck JW (1982) Biomass equations for major trees species of the Northeast. U.S. Department of Agriculture, Northeastern Forest Experiment Station, General Technical Report NE-69Google Scholar
  30. Vallet P, Dhôte J-F, Le Moguedéc G, Ravart M, Pignard G (2006) Development of total aboveground volume equations for seven important forest tree species in France. For Ecol Manage 229:98–110. doi:10.1016/j.foreco.2006.03.013 CrossRefGoogle Scholar
  31. Zianis D, Muukkonen P, Mäkipää R, Mencuccini M (2005) Biomass and stem volume equations for tree species in Europe. Silva Fenn Monogr 4. Available via DIALOG. http://www.metla.fi/silvafennica/full/smf/smf004.pdf

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Giovanni Tabacchi
    • 1
  • Lucio Di Cosmo
    • 1
  • Patrizia Gasparini
    • 1
  1. 1.Agricultural Research Council–Forest Monitoring and Management Research UnitTrentoItaly

Personalised recommendations