Skip to main content
Log in

Field maple and hornbeam populations along a 4-m elevation gradient in an alluvial forest

  • Original Paper
  • Published:
European Journal of Forest Research Aims and scope Submit manuscript

Abstract

Tree species composition of Central European alluvial hardwood forests has changed with the arrival of flood-intolerant and mesic species. Within this group of tree species, a dominant role is played by field maple (Acer campestre) and European hornbeam (Carpinus betulus). This study was performed in the Lanzhot natural forests at the confluence of the Morava and the Dyje Rivers, which are considered to be one of the most natural alluvial hardwood forests in Central Europe and where the absence of the direct influence by humans for 75 years has allowed spontaneous development. Our basic research questions were as follows: (1) does the mutual proportion and structure of field maple and hornbeam populations change along an elevation gradient of 4 m in an alluvial forest and (2) does the tree spatial pattern of field maple and hornbeam change along this gradient? The study found significant differences in the development of hornbeam and field maple populations with increasing elevation in an alluvial hardwood forest. While the strength of the hornbeam population clearly increases with increasing elevation, the field maple population does not. Compared to hornbeam, field maple is closer to the r-strategy side of the K-r continuum on alluvial sites. Our study reveals that field maple and hornbeam are mainly distributed in clusters on alluvial sites. Both species are concentrated at places with lower flooding intensity, i.e. to higher elevation sites. The study shows that tree spatial patterns could change dynamically along a short elevation gradient in alluvial hardwood forest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aldrich PR, Parker GR, Ward JS, Michler CH (2003) Spatial dispersion of trees in an old-growth temperate hardwood forest over 60 years of succession. For Ecol Manage 180:475–491

    Article  Google Scholar 

  • Anonymous (1952) Hmotové tabulky [Tree volume tables]. Lesprojekt [Forest management institute Brandýs nad Labem], Brandýs nad Labem

  • Anonymous (1998) World reference base for soil resources ISSS-ISRIC-FAO. World Soil Resour Rep 84:1–92

    Google Scholar 

  • Baddeley A (2008) Analysing spatial point patterns in R. CSIRO Australia 2008

  • Baddeley A, Turner R (2005) Spatstat: an R package for analyzing spatial point patterns. J Stat Softw 12(6):1–42

    Google Scholar 

  • Baptist MJ, Haasnoot M, Cornelissen P, Icke J, Wedden G, Vriend HJ, Hubic G (2006) Flood detention, nature development and water duality along the lowland river Sava, Croatia. Hydrobiologia 565:243–257

    Article  CAS  Google Scholar 

  • Besag J, Diggle PJ (1977) Simple Monte Carlo tests for spatial pattern. Appl Stat 26:327–333

    Article  Google Scholar 

  • Braun-Blanquet J (1921) Prinzipien einer Systematik der Pflanzengesellschaften auf floristischer Grundlage. Jahrbuch der St. Gallischen Naturwissenschaftlichen Gesellschaft 57:305–351

    Google Scholar 

  • Brzeziecki B, Kienast F (1994) Classifying the life-history strategies of trees on the basis of the Grimian model. For Ecol Manage 69:167–187

    Article  Google Scholar 

  • Carbiener R, Schnitzler A (1990) Evolution of major pattern models and processes of alluvial forest of the Rhine in the rift valley (France/Germany). Vegetatio 88:115–129

    Article  Google Scholar 

  • Chmelař J (1987) Dendrologie s ekologií lesních dřevin 2 část. Vysoká škola zemědělská Brno, Brno

  • Cooper CF (1961) Pattern in ponderosa pine forests. Ecology 42:493–499

    Article  Google Scholar 

  • Deiller AF, Walter JM, Tremolieres M (2001) Effects of flood interruption on species richness, diversity and floristic composition of woody regeneration in the upper Rhine alluvial hardwood forest. Regul Rivers Res Manage 17:393–405

    Article  Google Scholar 

  • Deiller AF, Walter JMN, Tremolieres M (2003) Regeneration strategies in a temperate hardwood floodplain forest of the upper Rhine: sexual versus vegetative reproduction of woody species. For Ecol Manage 180:215–225

    Article  Google Scholar 

  • Del Moral R (1983) Vegetation ordination of subalpine meadows using adaptive strategies. Can J Bot 61:3117–3127

    Article  Google Scholar 

  • Driessen P, Deckers J, Nachtergaele F (2001) Lecture notes on the major soils of the world. World Soil Resourc Rep 94:1–334

    Google Scholar 

  • Ellenberg H (1996) Vegetation Mitteleuropas mit den Alpen in ökologischer, dynamischer und historischer Sicht. Verlag Eugen Ulmer, Stuttgart

    Google Scholar 

  • Ellenberg H, Weber H, Düll R, Wirth V, Werner W, Paulißen D (1992) Zeigerwerte von Pflanzen in Mitteleuropa. Scripta Geobotanica 18:1–248

    Google Scholar 

  • Geissert F (1984) Fossile Floren aus der Rheinebene im nördlichen Elsass (Pliozan–Pleistozän-Holozän). In: Gehu JM (ed) La vegetation des forêts alluviales, Colloques phytosociologiques 9. Cramer, Berlin, pp 453–474

    Google Scholar 

  • Glenz C, Schlaepfer R, Iorgulescu I, Kienast F (2006) Flooding tolerance of Central European tree and shrub species. For Ecol Manage 235:1–13

    Article  Google Scholar 

  • Godreau V, Bornette G, Frochot B, Amoros C, Castella E, Oertli B, Chambaud F, Oberti D, Craney E (1999) Biodiversity in the floodplain of Saône: a global approach. Biodivers Conserv 8:839–864

    Article  Google Scholar 

  • Goreaud F, Pélissier R (2003) Avoiding misinterpretation of biotic interactions with the intertype K12-function: population independence vs. random labelling hypotheses. J Veg Sci 14:681–692

    Google Scholar 

  • Grime JP (1979) Plant strategies and vegetational processes. Wiley, New York

    Google Scholar 

  • Hamrick JL, Murawski DA, Nason JD (1993) The influence of seed dispersal mechanisms on the genetic structure of tropical tree populations. Plant Ecol 107–108:281–297

    Google Scholar 

  • Kamisako M, Sannoh K, Kamitani M (2007) Does understory vegetation reflect the history of fluvial disturbance in a riparian forest? Ecol Res 22:67–74

    Article  Google Scholar 

  • Kohyama T (1994) Size-structure-based models of forest dynamics to interpret population- and community-level mechanisms. J Plant Res 107:107–116

    Article  Google Scholar 

  • Korpel’ Š (1982) Degree of equilibrium and dynamical changes of the forest on example of natural forests of Slowakia. Acta Fac Forestalis Zvolen 24:9–30

    Google Scholar 

  • Korpel’ Š (1995) Die Urwälder der westkarpaten. Gustav Fischer, Stuttgart

    Google Scholar 

  • Král K, Vrška T, Hort L, Adam D, Šamonil P (2010) Developmental phases in a temperate natural spruce-fir-beech forest: determination by a supervised classification method. Eur J For Res 129:339–351

    Google Scholar 

  • Lotwick HW, Silverman BW (1982) Methods for analyzing spatial processes of several types of points. J Roy Stat Soc B 44:403–413

    Google Scholar 

  • MacArthur RH, Wilson EO (1967) The theory of island biogeography. Princeton University press, Princeton

    Google Scholar 

  • Menges ES, Waller DM (1983) Plant strategies in relation to elevation and light in floodplain herbs. Am Nat 122:454–473

    Article  Google Scholar 

  • Michéli E, Schad P (2006) World reference base for soil resources 2006. World Soil Resour Rep 103:1–128

    Google Scholar 

  • Michiels HG, Aldinger E (2002) Forstliche Standortsgliederung in der badische Rheinaue. Algemeine Jagd-und Forst Zeitung/Der Wald 57:811–815

  • Moeur M (1993) Characterizing spatial patterns of trees using stem-mapped data. For Sci 39:756–775

    Google Scholar 

  • Moravec J, Husová M, Chytrý M, Neuhäuslová Z (2000) Vegetation Survey of the Czech Republic—Hygrophilous, mesophilous and xerophilous deciduous forests. Academia, Praha

    Google Scholar 

  • Nakashizuka T (2001) Species coexistence in temperate, mixed deciduous forests. Trends Ecol Evol 16:205–210

    Article  PubMed  Google Scholar 

  • Näslund M (1936) Skogsförsöksanstaltens gallringsförsök i tallskog. Meddelanden från Statens Skogsförsöksanstalt 29:1–169

    Google Scholar 

  • Olano JM, Palmer MW (2003) Stand dynamics of an Appalachian old-growth forest during a severe drought episode. For Ecol Manage 174:139–148

    Article  Google Scholar 

  • Penka M, Vyskot M, Klimo E, Vasicek F et al (1985) Floodplain forest ecosystems I. Before water management measures. Academia, Praha

    Google Scholar 

  • Peterson CJ, Pickett STA (1990) Microsite and elevation influences on early forest regeneration after catastrophic windthrow. J Veg Sci 1:657–662

    Article  Google Scholar 

  • Peterson CJ, Squires ER (1995) An unexpected change in spatial patterns across 10 years in an aspen-white pine forest. J Ecol 83:847–855

    Article  Google Scholar 

  • Petráš R (1989) Matematický model tvaru kmeňa ihličnatých drevín. Lesnictví 35:867–878

    Google Scholar 

  • Petráš R (1990) Matematický model tvaru kmeňa listnatých drevín. Lesnícky Časopis 36:231–241

    Google Scholar 

  • Pielou EC (1969) An introduction to mathematical ecology. Wiley, New York

    Google Scholar 

  • Průša E (1974) Prales Cahnov–Soutok. Lesnictví 20:731–756

    Google Scholar 

  • Průša E (1985) Die böhmischen und mährischen Urwälder–Ihre Struktur und Ökologie. Academia, Praha

    Google Scholar 

  • Rebertus AJ, Williamson GB, Moser EB (1989) Fire-induced changes in Quercus laevis spatial pattern in Florida sandhills. J Ecol 77:638–650

    Article  Google Scholar 

  • Ripley BD (1977) Modelling spatial patterns. J Roy Stat Soc B 39:172–212

    Google Scholar 

  • Ripley BD (1988) Statistical inference for spatial processes. Cambridge University Pres, Cambridge

    Google Scholar 

  • Roberts J, Ludwig JA (1991) Riparian vegetation along current exposure gradients in floodplain wetlands of the River Murray, Australia. J Ecol 79:117–127

    Article  Google Scholar 

  • Rozas V, Prieto JAF (2000) Competition, mortality, and development of spatial patterns in two Cantabrian populations of Fagus sylvatica L. (Fagaceae). An Jard Bot Madr 58:117–131

    Article  Google Scholar 

  • Schnitzler A (1994) Conservation of biodiversity in alluvial hardwood forests of the temperate zone. The example of the Rhine valley. For Ecol Manage 68:385–398

    Article  Google Scholar 

  • Schnitzler A (1997) River dynamics as a forest process: interaction between fluvial systems and alluvial forests in large European river plains. Bot Rev 63:40–60

    Article  Google Scholar 

  • Shibata M, Nakashizuka T (1995) Seed and seedling demography of four co-occurring Carpinus species in a temperate deciduous forest. Ecology 76:1099–1108

    Article  Google Scholar 

  • Streng DR, Glitzenstein JS, Harcombe PA (1989) Woody seedling dynamics in an East Texas floodplain forest. Ecol Monogr 59:177–204

    Article  Google Scholar 

  • R Development Core Team (2006) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org

  • Trémolières M, Sánchez-Pérez JM, Schnitzler A, Schmitt D (1998) Impact of river management history on the community structure, species composition and nutrient status in the Rhine alluvial forest. Plant Ecol 135:59–78

    Article  Google Scholar 

  • Vera FWM (2004) Grazing ecology and forest history. CABI Publishing, Wallingford

    Google Scholar 

  • Vicherek J, Antonín V, Danihelka J, Grulich V et al (2000) Flóra a vegetace na soutoku Moravy a Dyje. Masarykova univerzita v Brně, Brno

    Google Scholar 

  • Vreugdenhil SJ, Kramer K, Pelsma T (2006) Effects of flooding duration, -frequency and -depth on the presence of saplings of six woody species in north-west Europe. For Ecol Manage 236:47–55

    Article  Google Scholar 

  • Vrška T (1997) Prales Cahnov–Soutok po 21 letech. Lesnictví Forestry 43:155–180

    Google Scholar 

  • Vrška T, Adam D, Hort L, Odehnalová P, Horal D, Král K (2006) Dynamika vývoje pralesovitých rezervací v České republice–Sv. 2, Lužní lesy–Cahnov–Soutok, Ranšpurk, Jiřina. Academia, Praha

    Google Scholar 

  • Wolf A (2005) Fifty year record of change in tree spatial patterns within a mixed deciduous forest. For Ecol Manage 215:212–223

    Article  Google Scholar 

Download references

Acknowledgments

The paper was developed and published thanks to financial support from the Project VaV-SP/2d2/138/08 (Dendromass cycling in near-natural forests of the Czech Republic depending upon time and different habitats) and the Research Programme MSM 6293359101 (Research into sources and indicators of biodiversity in the cultivated landscape in the context of the dynamics of its fragmentation).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Janik.

Additional information

Communicated by R. Matyssek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Janik, D., Adam, D., Vrška, T. et al. Field maple and hornbeam populations along a 4-m elevation gradient in an alluvial forest. Eur J Forest Res 130, 197–208 (2011). https://doi.org/10.1007/s10342-010-0421-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10342-010-0421-0

Keywords

Navigation