Skip to main content

Advertisement

Log in

Anthropogenic disturbance of natural forest vegetation on calcareous soils alters soil organic matter composition and natural abundance of 13C and 15N in density fractions

  • Original Paper
  • Published:
European Journal of Forest Research Aims and scope Submit manuscript

Abstract

In the last century, many calcareous soils in Castilla León (northwestern Spain) have been transformed from natural Quercus ilex forest to cropped land. Reforestation with Pinus halepensis has been taking place during the past 40 years. In order to obtain a better understanding of how these disturbances affect ecosystem functioning, we studied the quantity and quality of soil organic matter (SOM) in natural forest ecosystems, cropland and Pinus plantations. Density fractionation combined with ultrasonic dispersion enables separation and study of SOM fractions: free organic matter (OM), OM occluded into aggregates and OM stabilized in organo-mineral complexes, considered on the basis of the type of physical protection provided. We separated SOM density fractions and determined the concentrations of C and N, C/N ratios and the natural isotopic abundance (δ13C and δ15N values). Transformation of Quercus forest to cropland resulted in major losses of SOC and N, as expected. However, subsequent reforestation with Pinus resulted in good recovery of the original SOC and soil N pools. This indicates the potential for enhanced C storage in agricultural soils by their reversion to a forested state. Study of the density fractions and their 13C and 15N signatures enabled better understanding of the high stability of OM in calcareous soils, and analysis of δ13C variations throughout the profile also enabled identification of past C3/C4 vegetation change. Despite the different OC contents of soils under different land use, OM stabilization mechanisms were not significantly different. In calcareous soils, accumulation of SOC and N is mainly due to organo-mineral associations, resulting in physicochemical stabilization against further decomposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Accoe F, Beockx P, Van Cleemput O, Hofman G, Hui X, Bin H, Guanxion C (2002) Characterization of soil organic matter fractions from grassland and cultivated soils via C content and δ13C signature. Rapid Commun Mass Spectrom 16:2157–2164

    Article  CAS  PubMed  Google Scholar 

  • Accoe F, Beockx P, Van Cleemput O, Hofman G (2003) Relationship between soil organic C degradability and the evolution of the δ13C signature in profiles under permanent grassland. Rapid Commun Mass Spectrom 17:2591–2596

    Article  CAS  PubMed  Google Scholar 

  • Andreux F, Cerri C, Vose PB, Vitorello VA (1990) Potential of stable isotope, 15N and 13C methods for determining input and turnover in soils. In: Harrison AF (ed) Nutrient cycling in terrestrial ecosystems. Field methods, application and interpretation. Elsevier Applied Science, London, pp 259–275

    Google Scholar 

  • Baisden WT, Amundson R, Cook AC, Brenner DL (2002) Turnover and storage of C and N in five density fractions from California annual grassland surface soils. Global Biogeochem Cycles 16:117–132

    Google Scholar 

  • Balesdent J, Mariotti A (1988) Measurement of soil organic matter turnover using 13C natural abundance. In: Boutton TW, Yamasaki S (eds) Mass spectrometry of soil. Marcel Dekker, New York, pp 83–111

    Google Scholar 

  • Balesdent J, Girardin G, Mariotti A (1993) Site-related 13C of tree leaves and soil organic matter in a temperate forest. Ecology 74:1713–1721

    Article  Google Scholar 

  • Barrios E, Buresh RJ, Sprent JI (1996) Organic matter in soil particle size and density fractions from maize and legume cropping systems. Soil Biol Biochem 28:185–193

    Article  CAS  Google Scholar 

  • Bekele A, Hudnall WH (2003) Stable carbon isotope study of the prairie-forest transition soil in Louisiana. Soil Sci 168:783–792

    Article  CAS  Google Scholar 

  • Bernoux M, Cerri CC, Neill C, de Moraes JFL (1998) The use of stable carbon isotopes for estimating soil organic matter turnover rates. Geoderma 82:43–58

    Article  Google Scholar 

  • Billings SA (2006) Soil organic matter dynamics and land use change at a grassland/forest ecotone. Soil Biol Biochem 39:2934–2943

    Article  Google Scholar 

  • Billings SA, Schaeffer SM, Zitzer S, Charlet T, Smith SD, Evans RD (2002) Alterations of nitrogen dynamics under elevated CO2 in an intact Mojave Desert soils. Global Biogeochem Cycles 18:GB1011

    Article  Google Scholar 

  • Bird M, Kracht O, Derrien D, Zhou Y (2003) The effect of soil texture and roots on the stable carbon isotope composition of soil organic carbon. Aust J Soil Res 41:77–94

    Article  Google Scholar 

  • Boutton TW (1996) Stable carbon isotope ratios of soil organic matter and their use as indicators of vegetation and climate change. In: Boutton TW, Yamasaki S (eds) Mass spectrometry of soils. Marcel Dekker Inc., NY, pp 47–82

    Google Scholar 

  • Boutton TW, Archer SA, Midwood AJ, Zitzer SF, Bol R (1998) δ13C values of soil organic carbon and their use in documenting vegetation change in a subtropical savanna ecosystem. Geoderma 82:5–41

    Article  Google Scholar 

  • Briones MJI, Ostle NJ, Garnett MH (2006) Invertebrates increase the sensitivity of non-labile soil carbon to climate change. Soil Biol Biochem 39:816–818

    Article  Google Scholar 

  • Buchmann N, Brooks JR, Flanagan LB, Ehleringer JR (1998) Carbon isotope discrimination of terrestrial ecosystems. In: Griffiths H (ed) Stable isotopes and the integration of biological, ecological and geochemical processes. BIOS Scientific Publishers, Oxford, pp 203–222

    Google Scholar 

  • Burke IC, Yonker CM, Parton WJ, Cole CV, Flach K, Schimel DS (1989) Texture, climate and cultivation effects on soil organic matter content in U.S. Grassland Soils. Soil Sci Soc Am J 53:800–805

    Article  Google Scholar 

  • Christensen BT (1992) Physical fractionation of soil and organic matter in primary particle size and density separates. Advances in Soil Science, vol 20. Lewis Publishers, Boca Raton, pp 1–90

    Google Scholar 

  • Compton JE, Boone RD (2000) Long-term impacts of agriculture on soil carbon and nitrogen in New England forests. Ecology 81:2314–2330

    Article  Google Scholar 

  • Connin SL, Feng X, Virginia RA (2001) Isotopic discrimination during long-term decomposition in an arid land ecosystem. Soil Biol Biochem 33:41–51

    Article  CAS  Google Scholar 

  • Crow ES, Sulzman EW, Rugh WD, Bowden RD, Lajtha K (2006) Isotopic analysis of respired CO2 during decomposition of separate soil organic matter pools. Soil Biol Biochem 38:3279–3291

    Article  CAS  Google Scholar 

  • De Gryze S, Six J, Merckx S (2006) Quantifying water-stable soil aggregate turnover and its implication for soil organic matter dynamics in a model study. Eur J Soil Sci 57:693–707

    Article  Google Scholar 

  • Ehleringer JR, Buchmann N, Flanagan LB (2000) Carbon isotope ratios in belowground carbon cycle processes. Ecol Appl 10:412–422

    Article  Google Scholar 

  • Ellert BH, Janzen HH (1999) Short-term influence of tillage on CO2 fluxes from a semi-arid soil of the Canadian prairies. Soil Till Res 50:21–32

    Article  Google Scholar 

  • FAO (1996) Digital soil map of the world and derived soil properties. Vers. 3.5.,Nov., 1995. FAO, Rome

  • FAO (2007) Methods of analysis for soils of arid and semi-arid regions. 2007, Rome, pp 50

  • Fernández I, Mahieu N, Cadisch G (2003) Carbon isotope fractionation during decomposition of plant materials of different quality. Global Biogeochem Cycles 17:1075

    Article  Google Scholar 

  • García C, Roldan A, Hernández MT (1997) Changes in microbial activity after abandonment of cultivation in a semiarid Mediterranean environment. J Environ Qual 26:285–291

    Article  Google Scholar 

  • Gavinelli E, Feller C, Larre-Larrouy MC, Bacye B, Djegui N, Nzila JDD (1995) A routine method to study soil organic matter by particle size fractionation: examples for tropical soils. Comm Soil Sci Plant Anal 26:1749–1760

    Article  CAS  Google Scholar 

  • Glaser B (2005) Compound-specific stable-isotope (δ13C) analysis in soil science. J Plant Nutr Soil Sci 168:633–648

    Article  CAS  Google Scholar 

  • Glaser B, Turrión M-B, Solomon D, Ni A, Zech W (2000) Soil organic matter pools in mountain soils of the Alay Range, Kyrgyzia, affected by deforestation. Biol Fertil Soils 31:407–413

    Article  CAS  Google Scholar 

  • Golchin A, Oades JM, Skjemstad JO, Clarke P (1994) Soil structure and carbon cycling. Aust J Soil Res 32:1043–1068

    Article  Google Scholar 

  • Golchin A, Clarke P, Oades JM, Skjemstad JO (1995) The effects of cultivation on the composition of organic matter and structural stability of soils. Aust J Soil Res 33:59–76

    Article  Google Scholar 

  • Grandy AS, Robertson GP (2007) Land-use intensive effects on soil organic carbon accumulation rates and mechanisms. Ecosystems 10:58–73

    Article  CAS  Google Scholar 

  • Handley LL, Scrimgeour CM (1997) Terrestrial plant ecology and 15N natural abundance: the present limits to interpretation for uncultivated systems with original data from a Scottish old field. Adv Ecol Res 27:133–212

    Article  Google Scholar 

  • Haynes RJ, Beare MH (1996) Aggregation and organic matter storage in meso-thermal, humid soils. In: Carter MR, Stewart BA (eds) Advances in soil science structure and organic matter storage in agricultural soils. CRC Lewis Publishers, Boca Raton, pp 213–262

    Google Scholar 

  • Helfrich M, Ludwig B, Buurman P, Flessa H (2006) Effect of land use on the composition of soil organic matter in density and aggregate fractions as revealed by solid-state 13C NMR spectroscopy. Geoderma 136:331–341

    Article  CAS  Google Scholar 

  • Hobbie EA, Werner RA (2004) Intramolecular, compound specific, and bulk carbon isotope patterns in C3 and C4 plants: a review and synthesis. New Phytol 161:371–385

    Article  CAS  Google Scholar 

  • Hobbs RJ (1999) Restoration of disturbed ecosystems. In: Walker LR (ed) Ecosystems of disturbed ground, vol Chapter 29. Elsevier, The Netherlands, pp 673–687

    Google Scholar 

  • Jiménez B, Martínez G, Costa T (2006) Estudio comparado de la diversidad florística en masas de origen natural y repoblado de Pinus sylvestris L en la Sierra de Guadarrama (Sistema Central). Invest Agrar: Sist Recur For 111–123

  • Jolivet C, Arrouays D, Lévèque J, Andreux F, Chenu C (2003) Organic carbon dynamics in soil particle-size separates of sandy Spodosols when forest is cleared for maize cropping. Eur J Soil Sci 54:257–268

    Article  Google Scholar 

  • Killham K, Amato M, Ladd JN (1993) Effect of substrate location in soil and soil pore-water regime on carbon turnover. Soil Biol Biochem 25:57–62

    Article  CAS  Google Scholar 

  • Koba K, Tokuchi N, Hobbie EA, Iwatsubo G (1998) Natural abundance of nitrogen-15 in a forest soil. Soil Sci Soc Am J 62:778–781

    Article  CAS  Google Scholar 

  • Kramer MG, Sollins P, Sletten RS, Swart PK (2003) N isotope fractionation and measures of organic matter alteration during decomposition. Ecology 84:2021–2025

    Article  Google Scholar 

  • Krull ES, Skjemstad JO (2003) δ13C and δ15N profiles in 14C-dated Oxisol and Vertisols as a function of soil chemistry and mineralogy. Geoderma 112:1–29

    Article  CAS  Google Scholar 

  • La Scala N, Lopes A, Spokas K, Bolonhezi D, Archer DW, Reicosky DC (2008) Short-term temporal changes of soil carbon losses after tillage described by a first-order decay model. Soil Tillage Res 99:108–118

    Article  Google Scholar 

  • Liao JD, Boutton TW, Jastrow JD (2006) Organic matter turnover in soil physical fractions following woody plant invasion of grassland: evidence from natural 13C and 15N. Soil Biol Biochem 38:3197–3210

    Article  CAS  Google Scholar 

  • Llorente M, Turrión MB (2010) Microbiological parameters as indicators of soil organic carbon dynamics in relation to different land use management. Eur J Forest Res 129:73–81

    Article  CAS  Google Scholar 

  • Llorente M, Lafuente F, Ruipérez C, Turrión MB (2008) Uso de Parámetros Microbiológicos Edáficos como Indicadores del Efecto del Uso del Suelo en el Páramo Calizo Castellano-leonés. Actas de la II reunión sobre suelos forestales. Nuevas perspectivas de la relación suelo-árbol. Cuadernos de la SECF 25:273–280

    Google Scholar 

  • Mann LK (1986) Changes in soil carbon storage after cultivation. Soil Sci 142:279–288

    Article  CAS  Google Scholar 

  • Morra MJ, Blank RR, Freeborn LL, Shafii B (1991) Size fractionation of soil organo-mineral complexes using ultrasonic dispersion. Soil Sci 152:294–303

    Article  CAS  Google Scholar 

  • Nadelhoffer KJ, Fry B (1988) Controls on natural nitrogen-15 and carbon-13 abundances in forest soil organic matter. Soil Sci Soc Am J 52:1633–1640

    Article  Google Scholar 

  • Nordt LC, Boutton TW, Hallmark CT, Waters MR (1994) Late quaternary vegetation and climate changes in Central Texas based on isotopic compositions of organic carbon. Quat Res 41:109–120

    Article  CAS  Google Scholar 

  • North PF (1976) Towards an absolute measurement of soil structural stability using ultrasound. J Soil Sci 27:451–459

    Article  Google Scholar 

  • Piccolo MC, Neill C, Melillo JM, Cerri CC, Steudler PA (1996) 15N natural abundance in forest and pasture soils of the Brazilian Amazon Basin. Plant Soil 182:249–258

    CAS  Google Scholar 

  • Prior SA, Reikosky DC, Reeves DW, Runion GB, Raper RL (2000) Residue and tillage effects on planting implement-induced short-term CO2 and water loss from a loamy sand soil in Alabama. Soil Tillage Res 54:197–199

    Article  Google Scholar 

  • Rennie DA, Paul EA, Johns LE (1975) Natural nitrogen-15 abundance of soil and plant samples. Can J Soil Sci 56:43–50

    Article  Google Scholar 

  • Riga A, van Praag HJ, Brigode N (1970) Natural abundance of nitrogen isotopes in certain Belgium forest and agricultural soils. Geoderma 6:213–222

    Article  Google Scholar 

  • Roscoe R, Buurman P, Velthorst EJ, Vasconcellos CA (2001) Soil organic matter dynamics in density and particle size fractions as revealed by the 13C/12C isotopic ratio in a Cerrado′s oxisol. Geoderma 104:185–202

    Article  CAS  Google Scholar 

  • Rovira P, Vallejo VR (2003) Physical protection and biochemical quality of organic matter in Mediterranean calcareous forest soils: a density fraction approach. Soil Biol Biochem 35:245–261

    Article  CAS  Google Scholar 

  • Sanderman J, Amundson R, Baldocchi DD (2003) Application of eddy covariance measurements to the temperature dependence of soil organic matter mean residence time. Global Biogeochem Cycles 17:1061–1075

    Article  Google Scholar 

  • Schmidt HL, Gleixner G (1998) Carbon isotope effects on key reactions in plant metabolism and 13C patterns in natural compounds. In: Griffiths H (ed) Stable isotopes and the integration of biological, ecological and geochemical processes. BIOS Scientific Publishers, Oxford, pp 13–16

    Google Scholar 

  • Sevink J, Obale-Ebanga F, Meijer HAJ (2005) Land-use related organic matter dynamics in North Cameroon soils assessed by 13C analysis of soil organic matter fractions. Eur J Soil Sci 56:103–111

    Article  CAS  Google Scholar 

  • Shang C, Tiessen H (2000) Carbon turnover and Carbon-13 natural abundance in organo-mineral fractions of a tropical dry forest soil under cultivation. Soil Sci Soc Am J 64:2149–2155

    Article  CAS  Google Scholar 

  • Shearer G, Kohl DH, Sen-Hsiung C (1978) The nitrogen-15 abundance in a wide variety of soils. Soil Sci Soc Am J 42:899–902

    Article  CAS  Google Scholar 

  • Silfer JA, Engel MH, Macko SA (1992) Kinetic fractionations of stable carbon and nitrogen isotopes during peptide bond hydrolysis: experimental evidence and geochemical implications. Chem Geol 101:211–221

    CAS  Google Scholar 

  • Six J, Elliot ET, Paustian K (2000) Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture. Soil Biol Biochem 32:2099–2103

    Article  CAS  Google Scholar 

  • Six J, Guggenberger G, Paustian K, Haumaier L, Elliott ET, Zech W (2001) Sources and composition of soil organic matter fractions between and within soil aggregates. Eur J Soil Sci 52:607–618

    Article  CAS  Google Scholar 

  • Six J, Conant RT, Paul EA, Paustian K (2002) Stabilization mechanisms of soil organic matter: implications for C-saturation of soils. Plant Soil 241:155–176

    Article  CAS  Google Scholar 

  • Sohi SP, Mahieu N, Arah JRM, Powlson DS, Madari B, Gaunt JL (2001) A procedure for insolating soil organic matter fractions suitable for modelling. Soil Sci Soc Am J 65:1121–1128

    Article  CAS  Google Scholar 

  • Swanston CW, Caldwell BA, Homann PS, Ganio L, Sollins P (2002) Carbon dynamics during a long-term incubation of separate and recombined density fractions from seven forest soils. Soil Biol Biochem 34:1121–1130

    Article  CAS  Google Scholar 

  • Tiessen H, Karamanos RE, Stewart JWB, Selles F (1984) Natural nitrogen-15 abundance as an indicator of soil organic matter transformation in native and cultivated soils. Soil Sci Soc Am J 48:312–315

    Article  CAS  Google Scholar 

  • Traversa A, D′Orazio V, Senesi M (2008) Properties of dissolved organic matter in forest soils: influence of different plant covering. For Ecol Manag 256:2018–2028

    Article  Google Scholar 

  • Wedin DA, Tieszed LL, Dewey B, Pastor J (1995) Carbon isotope dynamics during grass decomposition and soil organic matter formation. Ecology 76:1383–1392

    Article  Google Scholar 

  • Wick AF, Ingram LJ, Stahl PD (2009) Aggregate and organic matter dynamics in reclaimed soils as indicated by stable carbon isotopes. Soil Biol Biochem 41:201–209

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank staff at the Department of Soil Physics, Universität Bayreuth, for assistance with the study. The project was funded by the Junta de Castilla y León, Spain and the Deutsche Forschungsgemeinschaft (GL 327/4-4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mireia Llorente.

Additional information

Communicated by A. Merino.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Llorente, M., Glaser, B. & Turrión, MB. Anthropogenic disturbance of natural forest vegetation on calcareous soils alters soil organic matter composition and natural abundance of 13C and 15N in density fractions. Eur J Forest Res 129, 1143–1153 (2010). https://doi.org/10.1007/s10342-010-0402-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10342-010-0402-3

Keywords

Navigation