Skip to main content

Advertisement

Log in

Uncertainty in timber assortment estimates predicted from forest inventory data

  • Original Paper
  • Published:
European Journal of Forest Research Aims and scope Submit manuscript

Abstract

Uncertainty factors related to inventory methodologies and forest-planning simulation computings in the estimation of logging outturn assortment volumes and values were examined. The uncertainty factors investigated were (1) forest inventory errors, (2) errors in generated stem distribution, (3) effects of generated stem distribution errors on the simulation of thinnings and (iv) errors related to the prediction of stem form and simulation of bucking. Regarding inventory errors, standwise field inventory (SWFI) was compared with area-based airborne laser scanning (ALS) and aerial photography inventorying. Our research area, Evo, is located in southern Finland. In all, 31 logging sites (12 clear-cutting and 19 thinning sites) measured by logging machine in winter 2008 were used as field reference data. The results showed that the most significant source of error in the prediction of clear-cutting assortment outturns was inventory error. Errors related to stem-form prediction and simulated bucking as well as generation of stem distributions also cause uncertainty. The bias and root-mean-squared error (RMSE) of inventory errors varied between −11.4 and 21.6 m3/ha and 6.8 and 40.5 m3/ha, respectively, depending on the assortment and inventory methodology. The effect of forest inventory errors on the value of logging outturn in clear-cuttings was 29.1% (SWFI) and 24.7% (ALS). The respective RMSE values related to thinnings were 41.1 and 42%. The generation of stem distribution series using mean characteristics led to an RMSE of 1.3 to 2.7 m3/ha and a bias of −1.2 to 0.6 m3/ha in the volume of all assortments. Prediction of stem form and simulation of bucking led to a relative bias of −0.28 to 0.00 m3 in predicted sawtimber volume. Errors related to pulpwood volumes were −0.4 m3 to 0.21 m3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Eid T (2000) Use of uncertain inventory data in forestry scenario models and consequential incorrect harvest decisions. Silva Fennica 34:89–100

    Google Scholar 

  • Eid T, Gobakken T, Næsset E (2004) Comparing stand inventories for large areas based on photo-interpretation and laser scanning by means of cost-plus-loss analyses. Scand J For Res 19:512–523

    Article  Google Scholar 

  • Gobakken T, Næsset E (2004) Estimation of diameter and basal area distributions in coniferous forest by means of airborne laser scanner data. Scand J For Res 19:529–542

    Article  Google Scholar 

  • Goldberg DE (1989) Genetic algorithms in search, optimization, and machine learning. Addison-Wesley Publishing Company, Reading, p 412

    Google Scholar 

  • Haara A (2005) The uncertainty of forest management planning data in Finnish non-industrial private forestry. Doctoral thesis. Dissertationes Forestales 8, 34 p

  • Haara A, Korhonen K (2004) Kuvioittaisen arvioinnin luotettavuus. Metsätieteen aikakauskirja 4:489–508 (in Finnish)

    Google Scholar 

  • Haralick R (1979) Statistical and structural approaches to texture. Proceedings of the IEEE 67(5):786–804

    Article  Google Scholar 

  • Haralick RM, Shanmugan K, Dinstein I (1973) Textural features for image classification. IEEE Transactions on Systems. Man and Cybernetics 3(6):610–621

    Article  Google Scholar 

  • Holmgren J (2003) Estimation of forest variables using airborne laser scanning. Ph.D. Thesis. Acta Universitatis Agriculturae Sueciae, Silvestria 278, Swedish University of Agricultural Sciences, Umeå

  • Holopainen M, Talvitie T (2006) Effects of data acquisition accuracy on timing of stand harvests and expected net present value. Silva Fennica 40(3):531–543

    Google Scholar 

  • Holopainen M, Haapanen R, Tuominen S, Viitala R (2008) Performance of airborne laser scanning- and aerial photograph-based statistical and textural features in forest variable estimation. In: Hill R, Rossette J, Suárez J (eds) Silvilaser 2008 Proceedings, pp 105–112

  • Holopainen M, Mäkinen A, Rasinmäki J, Hyyppä J, Hyyppä H, Kaartinen H, Viitala R, Vastaranta M, Kangas A (2009) Effect of tree level airborne laser scanning accuracy on the timing and expected value of harvest decisions. Euro J For Res (in press)

  • Hyyppä J, Inkinen M (1999) Detecting and estimating attributes for single trees using laser scanner. The Photogrammetric Journal of Finland 16:27–42

    Google Scholar 

  • Kangas A, Maltamo M (2000) Performance of percentile based diameter distribution prediction and Weibull method in independent data sets. Silva Fennica 34:381–398

    Google Scholar 

  • Kilkki P, Päivinen R (1987) Reference sample plots to combine field measurements and satellite data in forest inventory. Department of Forest Mensuration and Management, University of Helsinki. Research notes 19:210–215

    Google Scholar 

  • Kilkki P, Maltamo M, Mykkänen R, Päivinen R (1989) Use of the Wiebull function in estimating the basal-area diameter distribution. Silva Fennica 23:311–318

    Google Scholar 

  • Koskela L, Nummi T, Wenzel S, Kivinen V-P (2006) On the analyses of cubic smoothing spline-based stem curve prediction for forest harvesters. Can J For Res 36:2909–2919

    Article  Google Scholar 

  • Laasasenaho J (1982) Taper curve and volume functions for pine, spruce and birch. Communicationes. Institute Forestalis Fenniae 108, 74 p

  • Lappi J (1986) Mixed linear models for analyzing and predicting stem form variation of Scots pine. Seloste: Männyn runkomuodon analysointi ja ennustaminen lineaaristen sekamallien avulla. CF 134, 69 p

  • Leckie D, Gougeon F, Hill D, Quinn R, Armstrong L, Shreenan R (2003) Combined high-density lidar and multispectral imagery for individual tree crown analysis. Can J For Res 29:633–649

    Google Scholar 

  • Lim K, Treitz P, Wulder M, St. Onge B, Flood M (2003) LIDAR remote sensing of forest structure. Prog Phys Geogr 27:88–106

    Article  Google Scholar 

  • Malinen J, Maltamo M, Harstela P (2001) Application of most similar neighbor inference for estimating marked stand characteristics using harvester and inventory generated stem databases. International Journal of Forest Engineering 12:33–41

    Google Scholar 

  • Maltamo M, Kangas A (1998) Methods based on k-nearest neighbour regression in the prediction of basal area diameter distribution. Can J For Res 28:1107–1115

    Article  Google Scholar 

  • Maltamo M, Eerikäinen K, Pitkänen J, Hyyppä J, Vehmas M (2004) Estimation of timber volume and stem density based on scanning laser altimetry and expected tree size distribution functions. Remote Sens. Environ. 90:319–330

    Article  Google Scholar 

  • Maltamo M, Eerikäinen K, Packalén P, Hyyppä J (2006) Estimation of stem volume using laser scanning based canopy height metrics. Forestry 79:217–229

    Article  Google Scholar 

  • Maltamo M, Suvanto A, Packalén P (2007) Comparison of basal area and stem frequency diameter distribution modelling using airborne laser scanner data and calibration estimation. For Ecol Manag 247:26–34

    Article  Google Scholar 

  • Mehtätalo L (2002) MELA2002 ja uudet tukkivähennysmallit. In Nuutinen T, Kiiskinen A (toim.). MELA2002 ja käyttöpuun kuvaus. MELA-käyttäjäpäivä 7.5.2002 Joensuu. Metsäntutkimuslaitoksen tiedonantoja 865:32–46

  • MetInfo (2008) http://www.metla.fi/metinfo/ (April 2008)

  • Muinonen E, Tokola T (1990) An application of remote sensing for communal forest inventory. Proceedings from SNS/IUFRO workshop: the usability of remote sensing for forest inventory and planning, 26–28 February 1990, Umeå, Sweden. Remote Sensing Laboratory, Swedish University of Agricultural Sciences, Report 4, 35–42

  • Mykkänen R (1986) Weibull-funktion käyttö puuston läpimittajakauman estimoinnissa. M. Sc. thesis. University of Joensuu, Faculty of Forestry, 80 p (In Finnish)

  • Næsset E (1997) Estimating timber volume of forest stands using airborne laser scanner data. Remote Sens Environ 61:246–253

    Article  Google Scholar 

  • Næsset E (2002) Predicting forest stand characteristics with airborne scanning laser using a practical two-stage procedure and field data. Remote Sens Environ 80:88–99

    Article  Google Scholar 

  • Näsberg M (1985) Mathematical programming models for optimal log bucking. Linko¨ping studies in science and technology. Dissertation No. 132, 200 pp. ISBN 91-7372- 932-9

  • Ojansuu R (1993) Prediction of Scots pine increment using a multivariate variance component model. Tiivistelmä: Männyn kasvun ennustaminen monimuuttuja- ja varianssikomponenttimallilla. Acta Forestalia Fennica 239:72 (In Finnish)

    Google Scholar 

  • Ojansuu R, Halinen M, Härkönen K (2002) Metsätalouden suunnittelujärjestelmän virhelähteet männyn esiharvennuskypsyyden määrittämisessä. Metsätieteen aikakauskirja 3:441–457 (In Finnish)

    Google Scholar 

  • Oksanen-Peltola L, Paananen R, Schneider H, Ärölä E (1997) Solmu, Metsäsuunnittelun maastotyöopas. Metsätalouden kehittämiskeskus Tapio, 81 p (in Finnish)

  • Packalén P, Maltamo M (2006) Predicting the plot volume by tree species using airborne laser scanning and aerial photographs. Forest Science 56:611–622

    Google Scholar 

  • Packalén P, Maltamo M (2007) The k-MSN method in the prediction of species specific stand attributes using airborne laser scanning and aerial photographs. Remote Sensing of Environment 109:328–341

    Article  Google Scholar 

  • Packalén P, Maltamo M (2008) Estimation of species-specific diameter distributions using airborne laser scanning and aerial photographs. Can J For Res 38:1750–1760

    Article  Google Scholar 

  • Persson Å, Holmgren J, Söderman U (2002) Detecting and measuring individual trees using an airborne laser scanner. Photogrammetric Engineering and Remote Sensing 68:925–932

    Google Scholar 

  • Peuhkurinen J, Maltamo M, Malinen J (2008) Estimating species-specific diameter, distributions and saw log recoveries of boreal forests from airborne laser scanning data and aerial photographs: a distribution-based approach. Silva Fennica 42:625–641

    Google Scholar 

  • Popescu S, Wynne R, Nelson R (2003) Measuring individual tree crown diameter with lidar and assessing its influence on estimating forest volume and biomass. Can J For Res 29:564–577

    Google Scholar 

  • Poso S (1983) Basic features of inventory by compartments. Silva Fennica 17:313–349 (in Finnish)

    Google Scholar 

  • Rasinmäki J, Kalliovirta J, Mäkinen A (2009) SIMO: an adaptable simulation framework for multiscale forest resource data. Comput Electron Agric 66:76–84

    Article  Google Scholar 

  • Saari A, Kangas A (2005) Kuvioittaisen arvioinnin harhan muodostuminen. Metsätieteen aikakauskirja 1:5–18

    Google Scholar 

  • Siipilehto J (1999) Improving the accuracy of predicted basal-area diameter distribution in advanced stands by determining stem number. Silva Fennica 34:331–349

    Google Scholar 

  • StanFord (2009) Standard for forestry data and communication. SkogForsk http://www.skogforsk.se/

  • Tokola T (1990) Satelliittikuvan ja VMI-koealatiedon käyttö metsätalousalueen puuston inventoinnissa. Joensuun yliopisto, metsätieteellinen tiedekunta. Lisensiaattitutkimus. 53s

  • Tomppo E (1991) Satellite image-based national forest inventory of Finland. International Archives of Photogrammetry and Remote Sensing 28:419–424

    Google Scholar 

  • Uusitalo J, Kokko S, Kivinen V-P (2004) The effect of two bucking methods on Scots pine lumber quality. Silva Fennica 38(3):291–303

    Google Scholar 

  • Varjo J (1995) Latvan hukkaosan pituusmallit männylle, kuuselle ja koivulle metsurimittausta varten. Puutavaran mittauksen kehittämistutkimuksia 1989–1993, Verkasalo, E (toim.), Finnish Forest Research Institute Research Papers 558, pp 21–23

Download references

Acknowledgments

This study was made possible by financial aid from the Finnish Academy project Improving Forest Supply Chain by Means of Advanced Laser Measurements (L-Impact).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Holopainen.

Additional information

Communicated by M. Moog.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holopainen, M., Vastaranta, M., Rasinmäki, J. et al. Uncertainty in timber assortment estimates predicted from forest inventory data. Eur J Forest Res 129, 1131–1142 (2010). https://doi.org/10.1007/s10342-010-0401-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10342-010-0401-4

Keywords

Navigation