European Journal of Forest Research

, Volume 130, Issue 1, pp 55–65 | Cite as

Predicting understory maximum shrubs cover using altitude and overstory basal area in different Mediterranean forests

  • Lluís Coll
  • José Ramón González-Olabarria
  • Blas Mola-Yudego
  • Timo Pukkala
  • Christian Messier
Original Paper

Abstract

In some areas of the Mediterranean basin where the understory stratum represents a critical fire hazard, managing the canopy cover to control the understory shrubby vegetation is an ecological alternative to the current mechanical management techniques. In this study, we determine the relationship between the overstory basal area and the cover of the understory shrubby vegetation for different dominant canopy species (Pinaceae and Fagaceae species) along a wide altitudinal gradient in the province of Catalonia (Spain). Analyses were conducted using data from the Spanish National Forest Inventory. At the regional scale, when all stands are analysed together, a strong negative relationship between mean shrub cover and site elevation was found. Among the Pinaceae species, we found fairly good relationships between stand basal area and the maximum development of the shrub stratum for species located at intermediate elevations (Pinus nigra, Pinus sylvestris). However, at the extremes of the elevation-climatic gradient (Pinus halepensis and Pinus uncinata stands), stand basal area explained very little of the shrub cover variation probably because microsite and topographic factors override its effect. Among the Fagaceae species, a negative relationship between basal area and the maximum development of the shrub stratum was found in Quercus humilis and Fagus sylvatica dominated stands but not in Quercus ilex. This can be due to the particular canopy structure and management history of Q. ilex stands. In conclusion, our study revealed a marked effect of the tree layer composition and the environment on the relationship between the development of the understory and overstory tree structure. More fine-grained studies are needed to provide forest managers with more detailed information about the relationship between these two forest strata.

Keywords

Overstory Basal area Altitude Shrub cover Pinaceae Fagaceae 

References

  1. Aubin I, Ouellette MH, Legendre P, Messier C, Bouchard A (2009) Comparison of two plant functional approaches to evaluate natural restoration along an old-field—deciduous forest chronosequence. J Veg Sci 20(2):185–198CrossRefGoogle Scholar
  2. Balandier P, Collet C, Miller JH, Reynolds PE, Zedaker SM (2006a) Designing forest vegetation management strategies based on the mechanics and dynamics of crop tree competition by neighbouring vegetation. Forestry 79:3–27CrossRefGoogle Scholar
  3. Balandier P, Sonohat G, Sinoquet H, Varlet-Grancher C, Dumas Y (2006b) Characterisation, prediction and relationships between different wavebands of solar radiation transmitted in the understorey of even-aged oak (Quercus petraea, Q. robur) stands. Trees 20:363–370CrossRefGoogle Scholar
  4. Bergstedt J, Milberg J (2001) The impacts of logging intensity on field-layer vegetation in Swedish boreal forests. For Ecol Manag 154:105–115CrossRefGoogle Scholar
  5. Bertness MD, Callaway RM (1994) Positive interactions in communities. Trends Ecol Evol 9:191–193CrossRefGoogle Scholar
  6. Brooker RW, Maestre FT, Callaway RM, Lortie CL, Cavieres LA, Kunstler G, Liancourt P, Tielbörger K, Travis JMJ, Anthelme F, Armas C, Coll L, Corcket E, Delzon S, Forey E, Kikvidze Z, Olofsson J, Pugnaire F, Quiroz QL, Saccone P, Schiffers K, Seifan M, Touzard B, Michalet R (2008) Facilitation in plant communities: the past, the present and the future. J Ecol 96:18–34CrossRefGoogle Scholar
  7. Brosofske KD, Chen J, Crow TR (2001) Understory vegetation and site factors: implications for a managed Wisconsin landscape. For Ecol Manag 146:75–87CrossRefGoogle Scholar
  8. Cañellas I, Río M, Roig S, Montero G (2004) Growth response to thinning in Quercus pyrenaica Willd. coppice stands in Spanish central mountain. Ann For Sci 61:243–250CrossRefGoogle Scholar
  9. Ceballos L, Ruíz de la Torre J (1979) Árboles y arbustos de la España Peninsular. Serv. Publ. E.T.S. Ing. Montes, MadridGoogle Scholar
  10. Coll L, Balandier P, Picon-Cochard C, Prévosto B, Curt T (2003) Competition for water between beech seedlings and surrounding vegetation in different light and vegetation composition conditions. Ann For Sci 60:593–600CrossRefGoogle Scholar
  11. Coll L, Balandier P, Picon-Cochard C (2004) Morphological and physiological responses of beech (Fagus sylvatica L.) seedlings to grass-induced belowground competition. Tree Physiol 24:45–54PubMedGoogle Scholar
  12. DGCN (2005) Tercer Inventario Forestal Nacional (1997–2007): Cataluña. Ministerio de Medio Ambiente, MadridGoogle Scholar
  13. Fernandes P, Rigolot E (2007) The fire ecology and management of maritime pine (Pinus pinaster Ait.). For Ecol Manag 241:1–13CrossRefGoogle Scholar
  14. Gholz HL (1982) Environmental limits on aboveground net primary production, leaf area, and biomass in vegetation zones of the Pacific Northwest. Ecology 63:469–481CrossRefGoogle Scholar
  15. Gilliam FS, Turrill NL, Adams MB (1995) Species composition and patterns of diversity in herbaceous layer and woody overstory of clearcut versus mature central Appalachian hardwood forests. Ecol Appl 5:947–955CrossRefGoogle Scholar
  16. González JR, Pukkala T, Palahí M (2005) Optimising the management of Pinus sylvestris L. stand under risk of fire in Catalonia (north-east of Spain). Ann For Sci 62:493–501CrossRefGoogle Scholar
  17. González-Hernández MP, Silva-Pando FJ, Casal Jiménez M (1998) Production patterns of understory layers in several Galician (NW Spain) woodlands. For Ecol Manag 109:251–259CrossRefGoogle Scholar
  18. González-Olabarria JR (2006) Integrating fire risk into forest planning. Dissertationes forestales 23. Joensuu, FinlandGoogle Scholar
  19. Gràcia M, Ordóñez JL (Eds) (2009) Els alzinars. Manuals de gestió d’hàbitats. Diputació de Barcelona—Obra Social “la Caixa”, Barcelona, SpainGoogle Scholar
  20. Gràcia M, Retana J, Picó FX (2001) Seedling bank dynamics in managed holm oak (Quercus ilex) forests. Ann For Sci 58:843–852CrossRefGoogle Scholar
  21. Gràcia M, Montané F, Piqué J, Retana J (2007) Overstory structure and topographic gradients determining diversity and abundance of understory shrub species in temperate forests in central Pyrenees (NE Spain). For Ecol Manag 242:391–397CrossRefGoogle Scholar
  22. Grier CC, Running SW (1977) Leaf area of mature Northwestern coniferous forests: relation to site water balance. Ecology 58:893–899CrossRefGoogle Scholar
  23. Jiménez Sancho MP, Díaz-Fernández PM, Iglesias Sauce S, De Tuero y De Reina M, Gil Sánchez L (1996) Las regiones de procedencia de Quercus ilex L. en España. Instituto Nacional para la Conservación de la Naturaleza, Madrid, SpainGoogle Scholar
  24. Kerns BK, Ohmann JL (2004) Evaluation and prediction of shrub cover in coastal Oregon forests. Ecol Indic 4:83–98CrossRefGoogle Scholar
  25. Kunstler G, Curt T, Bouchaud M, Lepart J (2006) Indirect facilitation and competition in tree species colonization of sub-Mediterranean grasslands. J Veg Sci 17:379–388CrossRefGoogle Scholar
  26. Légaré S, Bergeron Y, Paré D (2001) Comparison of the understory vegetation in boreal forest types of southwest Quebec. Can J Bot 79:1019–1027CrossRefGoogle Scholar
  27. Lloret F, Solé A, Vayreda J, Terradas J (2009) Atles de plantes llenyoses dels boscos de Catalunya. Lynx Edcicions. ISBN: 84-393-7341-4. Barcelona, 192 ppGoogle Scholar
  28. Lopez-Moreno JI, Goyette S, Beniston M (2008) Climate change prediction over complex areas: spatial variability of uncertainties and predictions over the Pyrenees from a set of regional climate models. Int J Climat 28(11):1535–1550CrossRefGoogle Scholar
  29. McKenzie D, Halpern CB, Nelson CR (2000) Overstory influences on herb and shrub communities in mature forests of western Washington, USA. Can J For Res 30:1655–1666CrossRefGoogle Scholar
  30. Messier C, Parent S, Bergeron Y (1998) Effects of overstory vegetation on the understory light environment in mixed boreal forests. J Veg Sci 9:511–520CrossRefGoogle Scholar
  31. Planchais I, Sinoquet H (1998) Foliage determinants of light interception in sunny and shaded branches of Fagus sylvatica (L.). Agric For Met 89:241–253CrossRefGoogle Scholar
  32. Roberts MR, Christensen NL (1988) Vegetation variation among mesic successional forest stands in northern lower Michigan. Can J Bot 66:1080–1090CrossRefGoogle Scholar
  33. Saura S, Piqué M (2006) Forests and forest sector in Catalonia. In: Agriculture and agri-food production in perspective. Profile of the Sector in Catalonia. In: Joan Estany (ed.). University of Lleida. ISBN: 84-8409-207-0 (CD-ROM)Google Scholar
  34. Solé A, Lloret F, Estevan H, Vayreda J, Terradas J (2007) Atles de les espècies llenyoses de Catalunya. Actes del 2on Congrés Forestal Català. ISBN: 978-84-690-7849-5 (CD-ROM)Google Scholar
  35. Valladares F, Guzmán B (2006) Canopy structure and spatial heterogeneity of understory light in an abandoned Holm oak woodland. Ann For Sci 63:749–761CrossRefGoogle Scholar
  36. Vigo J, Carreras J, Ferré A (Eds.) (2006) Cartografia dels hàbitats de Catalunya. Manual d’interpretació. Departament de Medi Ambient i Habitatge. Generalitat de Catalunya. Barcelona. ISBN 84-393-7341-4, 344 ppGoogle Scholar
  37. Watt AS (1924) On the ecology of British beechwoods with special reference to their regeneration. Part II. The development and structure of beech communities on the sussex downs. J Ecol 12:145–204CrossRefGoogle Scholar
  38. Whiteman CD (2000) Mountain meteorology: fundamentals and applications. Oxford University Press, USA 355 pGoogle Scholar
  39. Yanai RD, Twery MJ, Stout SL (1998) Woody understory response to changes in overstorey density: thinning in Allegheny hardwoods. For Ecol Manag 102:45–60CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Lluís Coll
    • 1
  • José Ramón González-Olabarria
    • 1
  • Blas Mola-Yudego
    • 2
  • Timo Pukkala
    • 2
  • Christian Messier
    • 3
  1. 1.Forest Technology Center of CataloniaSolsonaSpain
  2. 2.School of Forest SciencesUniversity of Eastern FinlandJoensuuFinland
  3. 3.Centre d’Étude de la Forêt (CEF), Département des Sciences BiologiquesUniversité de Québec à MontréalMontréalCanada

Personalised recommendations