European Journal of Forest Research

, Volume 129, Issue 3, pp 313–324 | Cite as

Object-orientated image analysis for the semi-automatic detection of dead trees following a spruce bark beetle (Ips typographus) outbreak

  • Marco Heurich
  • Tobias Ochs
  • Thorsten Andresen
  • Thomas Schneider
Original Paper

Abstract

The survey and continuing inventory in the Bavarian Forest National Park of deadwood areas resulting from a spruce bark beetle calamity are being performed by means of visual evaluation of colour infrared aerial photographs. With the aid of the object-oriented image analysis software eCognition, it was possible to develop a partially automated method for this purpose. In order to verify the classification results, a test area was classified, and the results compared with those obtained by the previously used method. In addition, the classification results from two consecutive years were compared, and accuracy assessment methods were used to scrutinize the results. Classification in the deadwood areas yielded a total classification accuracy of 91.5%. In regard to objectivity and degree of detail, the newly developed method is significantly superior to the former method, which is based on visual interpretation with a stereo workstation. One problem, however, was the insufficient spatial accuracy of the respective orthophotos. Because of this, it was not possible to detect changes over the course of specified time intervals. Therefore, a practical application of this method would require that the orthophotos from various dates or times be precisely spatially assigned. This requirement can be achieved with the production of new orthophotos.

Keywords

Remote sensing Forest inventory Image analysis Dead trees Aerial photography 

References

  1. Andresen T, Mott C, Zimmermann S, Schneider T, Melzer A (2004) Erfassung und Beurteilung von aquatischen und terrestrischen Feuchtgebieten mit sehr hoch auflösenden FE-Daten. Bayer. Akad. f. Naturschutz u. Landespflege, Laufener Seminarbeitr 2/03:47–53Google Scholar
  2. Baatz M, Schäpe A (2000) Multiresolution segmentation—an optimization approach for high quality multi-scale image segmentation. In: Angewandte Geographische Informationsverarbeitung. Beiträge zum AGIT-symposium Salzburg 2000. Herbert Wichmann VerlagGoogle Scholar
  3. Baatz M, Benz U, Dehghani S, Heynen M, Hltje A, Hofmann P, Lingenfelder I, Mimler M, Sohlbach M, Weber M, Willhauck G (2002) eCognition user guide. Definiens Imaging, MünchenGoogle Scholar
  4. Benz U, Hofmann P, Willhaug G, Lingenfelder I, Heyen M (2004) Multiresolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information. ISPRS J Photogramm Remote Sens 58:239–258CrossRefGoogle Scholar
  5. Blaschke T, Hay G (2001) Object oriented image analysis and scale-space theory and methods for modelling and evaluation multiscale landscape structures. Int Archives Photogramm Remote Sens 34(Part 4/W5):22–29Google Scholar
  6. Blaschke T, Strobl J (2001) What’s wrong with pixels? Some recent developments interfacing remote sensing and GIS. GIS-Zeitschrift für Geoinformationssysteme 6/2001(S.):12–17Google Scholar
  7. Brunett C, Blaschke T (2003) A multi-scale segmentation/object relationship modelling methodology for landscape analysis. Ecol Model 168(2003):233–249CrossRefGoogle Scholar
  8. Chalifoux S, Cavayas F, Frey J (1998) Map-guided approach for the automatic detection on Landsat TM images of forest stands damaged by Spruce Budworm. Photogram Eng Remote Sens 64(6):629–635Google Scholar
  9. Congalton RG, Green K (1999) Assessing the accuracy of remotely sensed data: principles and practices. Lewis Publishers, Boca RatonGoogle Scholar
  10. De Kok R, Schneider T, Ammer U (1999) Object based classification and applications in the alpine forest environment. Int Arch Photogramm Remote Sens vol 32, Part 7-4-3 Wg, Valladolid, Spain, 3–4. June, 1999Google Scholar
  11. Flanders D, Hall-Beyer M, Pereverzoff J (2003) Preliminary evaluation of eCognition object-based software for cut block delineation and feature extraction. Can J Remote Sens 29(4):441–452Google Scholar
  12. Foody GM (2002) Status of land cover classification accuracy assessment. Remote Sens Environ 80:185–201CrossRefGoogle Scholar
  13. Franklin SE (ed) (2001) Remote sensing for sustainable forest management. Lewis Publishers, New York, pp 296–300Google Scholar
  14. Franklin SE, Raske S (1994) Satellite remote sensing of Spruce Buworm defoliaton in western Newfoundland. Can J Remote Sens 20(1):37–48Google Scholar
  15. Gillis M, Leckie D (1993) Forest inventory mapping procedures across Canada. Forestry Canada, PNFI information report PI-X-114. 79 ppGoogle Scholar
  16. HÁJEK F (2005) Object-oriented classification of remote sensing data for the identification of tree species composition. In: Proceedings of ForestSat 2005 conference, May 31–June 3, 2005, Boras, SwedenGoogle Scholar
  17. Heese S, Schmullius C (2005) Approaches to Kyoto afforestation, reforestation and deforestation mapping in Siberia using object oriented change detection methods. In: Erasmi S, Cyffka B, Kappas M (eds) Remote sensing and GIS for environmental studies. Göttinger Geographische Abhandlungen, vol 115. Göttingen 2005Google Scholar
  18. Hellden U (1980) A test of landsat-2 imagery and digital data for thematic mapping illustrated by an environmental study in northern Kenya, Lund Univ Nat Geog Inst, Lund, Sweden, Techn Rep 47Google Scholar
  19. Heurich M (2006) Evaluierung und Entwicklung von Methoden zur automatisierten Erfassung von Waldstrukturen aus Daten flugzeuggetragener Fernerkundungssensoren. Forstliche Forschungsberichte München. 202/2006Google Scholar
  20. Heurich M, Neufanger M (2005) Die Wälder des Nationalparks Bayerischer Wald. Ergebnisse der Waldinventur 2002/2003 im geschichtlichen und waldökologischen Kontext. Wissenschaftliche Schriftenreihe der Nationalparkverwaltung Bayerischer Wald. Band 16Google Scholar
  21. Heurich M, Fahse L, Reinelt A (2001) Die Buchdruckermassenvermehrung im Nationalpark Bayerischer Wald. In: Waldentwicklung im Bergwald nach Windwurf und Borkenkäferbefall. Wissenschaftliche Schriftenreihe der Nationalparkverwaltung Bayerischer Wald. Band 16Google Scholar
  22. Hildebrandt G (1996) Fernerkundung und Luftbildmessung für Forstwirtschaft, Vegetationskartierung und Landschaftsökologie. Wichmann Verlag. HeidelbergGoogle Scholar
  23. Itten K, Meyer P, Kellenberger T, Leu R, Sandmeier ST, Bitter P, Seidel K (1992) Correction of the impact of topography and atmosphere on landsat TM forest mapping of Alpine regions; remote sensing series, vol 18, University of ZürichGoogle Scholar
  24. Janoth J, Eisl M, Klaushofer F, Luckel W (2002) Sementasierte Verfahren zur Veränderungsanalyse und Waldklassifizierung mit hochauflösenden Satellitendaten. Fernerkundung und GIS: Neue Sensoren-innovative Methoden. Wichmann, Heidelberg, pp 98–107Google Scholar
  25. King DJ (2000) Airborne remote sensing in forestry: sensors, analysis, applications. For Chron 76(6):859–876Google Scholar
  26. Krzystek P (2003) Digitale Aerotriangulation im Nationalpark Bayerischer Wald. Unveröffentlicher Bericht. 4 SGoogle Scholar
  27. Krzystek P, Bögel U (2004) Orthofotoerstellung “Nationalparkverwaltung Bayerischer Wald” 1994 und 2004. Unveröffentlichter Bericht. 12 SGoogle Scholar
  28. Mitri GH, Gitas IZ (2006) Fire type mapping using object-based classification of Ikonos imagery. Int J Wildland Fire 2006(15):457–462CrossRefGoogle Scholar
  29. Mott C, Andresen T, Rogg C, Schneider T, Zimmermann S, Ammer U (2004) AQUATIC: Identifizierung und Monitoring von Landnutzungs-/Landoberflächen-Typen in einem multitemporalen/multisensoralen Ansatz. Bayer. Akad. f. Naturschutz u. Landespflege, Laufener Seminarbeitr 2/03:55–65Google Scholar
  30. Rall H, Martin K (2002) Luftbildauswertung zur Waldentwicklung im Nationalpark Bayerischer Wald 2001—Ein neues Verfahren und seine Ergebnisse zur Totholzkartierung. In: Berichte aus dem Nationalpark, Nationalparkverwaltung Bayerischer Wald 1 (2002)Google Scholar
  31. Schneider T, Kok R, De Buck A, Manakos I (2000) Objektorientierte Bildanalyse—Paradigmenwechsel in der thematischen Auswertung von Erdbeobachtungsdaten. In: Lehrstuhl für Landnutzungsplanung und Naturschutz (Hrsg.): Landnutzungsplanung und Naturschutz: Aktuelle Forschungsberichte. Festschrift zur Emeritierung von Prof. Dr. Ulrich Ammer (2000), 234–258Google Scholar
  32. Schöpfer E, Lang S (2006) Object fate analysis—a visual overlay method for the categorization of object transition and object based accuracy assessment. In: Lang S, Blaschke T, Schöüfer E (eds) Proceedings of the 1st international conference on object based image analysis, 4–5 July 2006, Salzburg, AustriaGoogle Scholar
  33. Short NM (1982) The Landsat tutorial workbook—basics of satellite remote sensing, NASA ref. Pub. 1078, GreenbeltGoogle Scholar
  34. Smits PC, Dellepiane SG, Schowengerdt RA (1999) Quality assessment of image classification algorithms for land-cover mapping: a review and a proposal for a cost-based approach. Int J Remote Sens 20(8):1461–1486CrossRefGoogle Scholar
  35. Tiede D, Hoffmann CK (2006) Process oriented object—based algorithms for single tree detection using laser scanning data. In: EARSeL proceedings, 3-D in remote sensing in forestry, 14–15.02.06, Vienna, Austria, 151–156Google Scholar
  36. Tiede D, Blaschke T, Heurich M (2004) Object-based semi-automatic mapping of forest stands with laser scanner and multi-spectral data. Int Arch Photogramm Remote Sens Sp Inf Sci XXXVI(Part 8/W2):328–333Google Scholar
  37. Wulder MA (1998) Optical remote sensing techniques for the assessment of forest inventory and biophysical parameters. Prog Phys Geogr 22(4):449–476Google Scholar
  38. Wulder MA, Skakun RS, Dymond CC, Kurz WA, White JC (2005) Characterization of the diminishing accuracy in detecting forest insect damage over time. Can J Remote Sens 31(6):421–431Google Scholar
  39. Zöhrer F (1980) Forstinventur. Ein Leitfaden für Studium und Praxis. Pareys Studientexte 26. Verlag Paul Parey. Hamburg und Berlin. 207 ppGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Marco Heurich
    • 1
  • Tobias Ochs
    • 2
  • Thorsten Andresen
    • 2
  • Thomas Schneider
    • 2
  1. 1.Nationalparkverwaltung Bayerischer WaldGrafenauGermany
  2. 2.Technische Universität MünchenMunichGermany

Personalised recommendations