European Journal of Forest Research

, Volume 129, Issue 3, pp 289–298 | Cite as

Inner Alpine conifer response to 20th century drought swings

  • Pascale Affolter
  • Ulf BüntgenEmail author
  • Jan Esper
  • Andreas Rigling
  • Pascale Weber
  • Jürg Luterbacher
  • David Frank
Original Paper


Tree rings from the Alpine area have been widely used to reconstruct variations in summer temperature. In contrast, estimates of changes in the hydrological cycle are rather scarce. In order to detect altitudinal and species-specific patterns of growth responses to anomalous dry and wet conditions, a large network of 53 tree-ring width site chronologies along the Rhone valley (Valais, Switzerland) covering the 1751–2005 period was compiled and analyzed. A total of 1,605 measurement series from four conifer species—pine, larch, spruce, fir—were detrended to allow inter-annual to multi-decadal scale variability to be preserved. Site chronologies were combined to four altitudinal (colline: <800 m asl, sub-montane: 800–1,000 m asl, montane: 1,000–1,450 m asl, sub-alpine: >1,450 m asl) and species-specific mean time-series. These records were compared with temperature, precipitation, and drought (scPDSI) data. Among the altitudinal records, the colline chronologies showed highest correlation with June precipitation and scPDSI (0.5 and 0.7). Altitudinal effects, via control on climatic conditions, were superimposed upon species-specific characteristics in affecting tree growth and response to moisture variations. In particular, species-specific differences affected the significance level of drought response, with decreasing drought sensitivity towards higher elevations. Growth conditions were found to be optimal at ~1,300 m asl, with precipitation/drought limiting tree growth below and temperature above. Common years of extreme drought and low growth for the colline sites occurred in 1921, 1944, 1976, 1992, and 1998. Our results demonstrate the potential of lower elevation conifers for reconstructing long-term changes in Alpine hydro-climate.


Alpine drought Tree-ring width Hydro-climate Dendroclimatology 



We thank F. Schweingruber, F. Kienast, B. Eilmann, and P. Cherubini for providing tree-ring data. A. Verstege, D. Nievergelt, and M. Schmidhalter joint fieldwork. U. B. and D. F. were supported by the EC project Millennium (#017008) and the Swiss SNF project NCCR Climate. P. W. was supported by the Velux foundation. J. L. acknowledges support from the 7th EU Framework program ACQWA (Assessing Climate Impacts on the Quantity and Quality of Water,, # 212250).


  1. Auer I, 31 Co-authors (2007) HISTALP–historical instrumental climatological surface time series of the Greater Alpine Region. Int J Climatol 23:1–26Google Scholar
  2. Bigler C, Bräker OU, Bugmann H, Dobbertin M, Rigling A (2006) Drought as an inciting mortality factor in Scots Pine stands of the Valais, Switzerland. Ecosystems 9:330–343CrossRefGoogle Scholar
  3. Brázdil R, Stepankova P, Kyncl T, Kyncl J (2002) Fir treering reconstruction of March–July precipitation in southern Moravia (Czech Republic), 1376–1996. Climate Res 20:223–239Google Scholar
  4. Brázdil R, Pfister C, Wanner H, von Storch H, Luterbacher J (2005) Historical climatology in Europe–the state of the art. Climatic Change 70:363–430CrossRefGoogle Scholar
  5. Büntgen U, Esper J, Frank DC, Nicolussi K, Schmidhalter M (2005) A 1052-year tree-ring proxy for Alpine summer temperatures. Clim Dyn 25:141–153CrossRefGoogle Scholar
  6. Büntgen U, Frank DC, Nievergelt D, Esper J (2006) Summer temperature variations in the European Alps, A.D. 755–2004. J Clim 19:5606–5623CrossRefGoogle Scholar
  7. Büntgen U, Frank DC, Kaczka RJ, Verstege A, Zwijacz-Kozica T, Esper J (2007) Growth responses to climate in a multi-species tree-ring network in the Western Carpathian Tatra Mountains, Poland and Slovakia. Tree Physiol 27:689–702PubMedGoogle Scholar
  8. Büntgen U, Frank DC, Wilson R, Carrer M, Urbinati C, Esper J (2008) Testing for tree-ring divergence in the European Alps. Global Change Biol 14:2443–2453CrossRefGoogle Scholar
  9. Büntgen U, Brázdil R, Frank DC, Esper J (2009a) Three centuries of Slovakian drought dynamics. Clim Dyn. doi: 10.1007/s00382-009-0563-2
  10. Büntgen U, Frank D, Carrer M, Urbinati C, Esper J (2009b) Improving Alpine summer temperature reconstructions by increasing sample size. TRACE 7:36–43Google Scholar
  11. Büntgen U, Frank D, Franke J, Wilson R, Gonzalez-Rouco F, Esper J (2009c) Proxy number and location to reconstruct European climate variability. Clim Res (in review)Google Scholar
  12. Cook ER, Peters K (1981) The smoothing spline: a new approach to standardizing forest interior tree-ring width series for dendroclimatic studies. Tree-Ring Bull 41:45–53Google Scholar
  13. Cook ER, Briffa KR, Meko DM, Graybill DA, Funkhouser G (1995) The ‘segment length curse’ in long tree-ring chronology development for palaeoclimatic studies. The Holocene 5:229–237CrossRefGoogle Scholar
  14. Cook ER, Esper J, D’Arrigo R (2004) Extra-tropical northern hemisphere temperature variability over the past 1000 years. Quat Sci Rev 23:2063–2074CrossRefGoogle Scholar
  15. Dobbertin M, Rigling A (2006) Mistletoe (Viscum album ssp. austriacum) contributes to the Pinus sylvestris L. decline in the Rhone Valley of Switzerland. Forest Pathol 36:309–322CrossRefGoogle Scholar
  16. Dobbertin M, Mayer P, Wohlgemuth T, Feldmeyer-Christe E, Graf U, Zimmermann N, Rigling A (2005) The decline of Pinus sylvestris L. forests in the Swiss Rhone valley—a result of drought stress? Phyton 45:153–156Google Scholar
  17. Efthymiadis D, Jones PD, Briffa KR, Böhm R, Maugeri M (2007) Influence of large-scale atmospheric circulation on climate variability in the Greater Alpine Region of Europe. J Geophys Res 112:D12104. doi: 10.1029/2006JD008021
  18. Eilmann B, Weber P, Rigling A, Eckstein D (2006) The influence of drought on the wood structure of Pinus sylvestris L. and Quercus pubescens Willd. in Valais, Switzerland. Dendrochronologia 23:121–132CrossRefGoogle Scholar
  19. Esper J, Cook ER, Schweingruber FH (2002) Low-frequency signals in long tree-ring chronologies and the reconstruction of past temperature variability. Science 295:2250–2253CrossRefPubMedGoogle Scholar
  20. Esper J, Frank DC, Büntgen U, Verstege A, Luterbacher J, Xoplaki E (2007) Long-term drought severity variations in Morocco. Geophys Res Lett 34:L17702. doi: 10.1029/2007GL030844
  21. Esper J, Niederer R, Bebi P, Frank DC (2008) Climate signal age effects—evidence from young and old trees in the Swiss Engadin. For Ecol Manag 255:3783–3789CrossRefGoogle Scholar
  22. Frank D, Esper J (2005a) Characterization and climate response patterns of a high-elevation, multi-species tree-ring network in the European Alps. Dendrochronologia 22:107–121CrossRefGoogle Scholar
  23. Frank D, Esper J (2005b) Temperature reconstructions and comparisons with instrumental data from a tree-ring network for the European Alps. Int J Climatol 25:1437–1454CrossRefGoogle Scholar
  24. Frank D, Esper J, Cook ER (2007a) Adjustment for proxy number and coherence in a large-scale temperature reconstruction. Geophys Res Lett 34:L16709. doi: 10.1029/2007GL030571
  25. Frank D, Büntgen U, Böhm R, Maugeri M, Esper J (2007b) Warmer early instrumental measurements versus colder reconstructed temperatures: shooting at a moving target. Quat Sci Rev 26:3298–3310CrossRefGoogle Scholar
  26. Friedrichs D, Büntgen U, Esper J, Frank D, Neuwirth B, Löffler J (2009) Complex climate controls on 20th century oak growth in Central-West Germany. Tree Physiol 29:39–51CrossRefPubMedGoogle Scholar
  27. Fritts HC (1976) Tree rings and climate. Academic Press, LondonGoogle Scholar
  28. Gärtner H, Esper J, Rigling A, Treydte K, Cherubini P (2004) Geomorphologie und Jahrringe–Feldmethoden in der Dendrogeomorphologie. Schweizerische Zeitschrift für Forstwesen 155:198–207CrossRefGoogle Scholar
  29. Gimmi U, Luterbacher J, Pfister C, Wanner H (2007) A method to reconstruct long precipitation series using systematic descriptive observations in weather diaries: the example of the precipitation series for Bern, Switzerland (1760–2003). Theor Appl Climatol 87:185–197Google Scholar
  30. Gimmi U, Burgi M, Stuber M (2008) Reconstructing anthropogenic disturbance regimes in forest ecosystems: a case study from the Swiss Rhone Valley. Ecosystems 11:113–124CrossRefGoogle Scholar
  31. Huntington GT (2005) Evidence for intensification of the global water cycle: review and synthesis. J Hydrol 319:83–95CrossRefGoogle Scholar
  32. IPCC (2007) Climate Change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the IPCC. Cambridge University Press, Cambridge, United Kingdom and New YorkGoogle Scholar
  33. Kienast F, Schweingruber FH, Braeker OU, Schaer E (1987) Tree-ring studies on conifers along ecological gradients and the potential of single-year analyses. Can J Forest Res 17:683–696CrossRefGoogle Scholar
  34. Leal S, Eamus D, Grabner M, Wimmer R, Cherubini P (2008) Tree rings of Pinus nigra from the Vienna basin region (Austria) show evidence of change in climatic sensitivity in the late 20th century. Can J Forest Res 38:744–759CrossRefGoogle Scholar
  35. Matti C, Pauling A, Küttel M, Wanner H (2009) Winter precipitation trends for two selected European regions over the last 500 years and their possible dynamical background. Theor Appl Climatol 95:9–26Google Scholar
  36. Mitchell TD, Jones PD (2005) An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int J Climatol 25:693–712CrossRefGoogle Scholar
  37. Nemani RR, Keeling CD, Hashimoto H, Jolly WM, Piper SC, Tucker CJ, Myneni RB, Running SW (2003) Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science 300:1560–1563CrossRefPubMedGoogle Scholar
  38. Neuwirth B, Esper J, Schweingruber FH, Winiger M (2004) Site ecological differences to the climatic forcing of spruce pointer years from the Lötschental, Switzerland. Dendrochronologia 21:69–78CrossRefGoogle Scholar
  39. Oberhuber W, Kofler W (2002) Dendroclimatological spring rainfall reconstruction for an inner Alpine dry valley. Theor Appl Climatol 71:97–106CrossRefGoogle Scholar
  40. Oberhuber W, Stumböck M, Kofler W (1998) Climate-tree-growth relationships of Scots pine stands (Pinus sylvestris L.) exposed to soil dryness. Trees 13:19–27Google Scholar
  41. Pauling A, Luterbacher J, Casty C, Wanner H (2006) Five hundred years of gridded high-resolution precipitation reconstructions over Europe and the connection to large-scale circulation. Clim Dyn 26:387–405CrossRefGoogle Scholar
  42. Rigling A, Waldner P, Forster T, Bräker OU, Pouttu A (2001) Ecological interpretation of tree ring width and intra-annual density fluctuations of Pinus sylvestris L. from dry sites of the central Alps and Siberia. Can J For Res 31:18–31CrossRefGoogle Scholar
  43. Rigling A, Bräker OU, Schneiter G, Schweingruber FH (2002) Intra-annual tree-ring parameters indicating differences in drought stress of Scots pine forests within the Erico-Pinion in the Valais, Switzerland. Plant Ecol 163:105–121CrossRefGoogle Scholar
  44. Rigling A, Brühlhart H, Bräker OU, Forster T, Schweingruber FH (2003) Irrigation effect on tree growth and vertical resin duct production of Pinus sylvestris L. on dry sites in the Central Alps, Switzerland. For Ecol Manag 163:105–121Google Scholar
  45. Schweingruber FH, Nogler P (2003) Synopsis and climatological interpretation of Central European tree-ring sequences. Botan Helv 113:125–143Google Scholar
  46. Stott P, Mitchell JFB, Allen MR, Delworth TL, Gregory JM, Meehl GA, Santer BD (2006) Observational constraints on past attributable warming and predictions of future global warming. J Clim 19:3055–3069CrossRefGoogle Scholar
  47. Straile D, Stenseth NC (2007) The North Atlantic oscillation and ecology: links between historical time-series, and lessons regarding future climate warming. Clim Res 34:259–262CrossRefGoogle Scholar
  48. Strumia G, Wimmer R, Grabner M (1997) Dendroclimatic sensitivity of Pinus Nigra Arnold in Austria. Dendrochronologia 15:129–137Google Scholar
  49. Trenberth KE (1984) Some effects of finite sample size and persistence on meteorological statistics. Part I: Autocorrelations. Mon Weather Rev 112:2359–2368CrossRefGoogle Scholar
  50. Treydte KS, Schleser GH, Helle G, Frank DC, Winiger M, Haug GH, Esper J (2006) The 20th century was the wettest period in northern Pakistan over the past millennium. Nature 440:1179–1182CrossRefPubMedGoogle Scholar
  51. van der Schrier G, Briffa KR, Jones PD, Osborn TJ (2006) Summer moisture variability across Europe. J Clim 19:2828–2834Google Scholar
  52. van der Schrier G, Efthymiadis D, Briffa KR, Jones PD (2007) European Alpine moisture variability for 1800–2003. Int J Climatol 27:415–427CrossRefGoogle Scholar
  53. Wanner H, Gyalistras D, Luterbacher J, Rickli R, Salvisberg E, Schmutz CH (2000) Klimawandel im Schweizer Alpenraum. Vdf Hochschulverlag AG, ETH, ZürichGoogle Scholar
  54. Weber P, Bugmann H, Rigling A (2007) Radial growth responses to drought of Pinus sylvestris and Quercus pubescens in an inner Alpine dry valley. J Veg Sci 18:777–792CrossRefGoogle Scholar
  55. Weber P, Bugmann H, Fonti P, Rigling A (2008) Using a retrospective dynamic competition index to reconstruct forest succession. For Ecol Manag 254:96–106CrossRefGoogle Scholar
  56. Wigley TML, Briffa KR, Jones PD (1984) On the average of value of correlated time series, with applications in dendroclimatology and hydrometeorology. J Climatol Appl Meteorol 23:201–213CrossRefGoogle Scholar
  57. Wilson RJ, Luckman BH, Esper J (2005) A 500-year dendroclimatic reconstruction of spring-summer precipitation from the lower Bavarian forest region, Germany. In J Climatol 25:611–630CrossRefGoogle Scholar
  58. Zhang X, Zwiers FW, Hegerl GC, Lambert FH, Gillett NP, Solomon S, Stott PA, Nozawa T (2007) Detection of human influence on twentieth-century precipitation trends. Nature 448:461–465CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Pascale Affolter
    • 1
  • Ulf Büntgen
    • 2
    • 3
    Email author
  • Jan Esper
    • 4
  • Andreas Rigling
    • 2
  • Pascale Weber
    • 2
  • Jürg Luterbacher
    • 5
  • David Frank
    • 2
    • 3
  1. 1.Institute of GeographyUniversity of BerneBernSwitzerland
  2. 2.Swiss Federal Research Institute WSLBirmensdorfSwitzerland
  3. 3.Oeschger Centre for Climate Change ResearchBernSwitzerland
  4. 4.Department of GeographyJohannes Gutenberg UniversityMainzGermany
  5. 5.Department of GeographyJustus-Liebig-UniversityGiessenGermany

Personalised recommendations