Skip to main content
Log in

Complexity and information propagation in hydrological time series of mountain forest catchments

  • Original Paper
  • Published:
European Journal of Forest Research Aims and scope Submit manuscript

Abstract

Ecosystem analysis is typically done by determination of species composition, structural exploration, determination of matter and energy fluxes and/or system analyses based on deterministic or probabilistic/stochastic model approaches. However, regarding ecosystem dynamics, temporal structure, information content, complexity of signals, and their modifications when subsequently passing through different subsystems, have not intensively been studied to date. Structure in time series characterised by information and complexity measures may provide additional, powerful tools to analyse state and dynamics of ecosystems. Along their path through ecosystem compartments, e.g., hydrological signals are transformed in several ways, comprising changes in randomness, autocorrelation structures, and smoothness. Thus, time series analyses with complexity and information measures are of interest for a holistic understanding of ecosystem behaviour and early indications of natural and anthropogenic disturbances of ecosystems such as ecosystem degradation and climate change. Further, these measures provide additional criteria for the calibration of model parameters, tests of model validity, and determination of the necessary degree of complexity of process models. In this paper, we present the outcome from applications of information and complexity measures to hydrological time series in two climatically different forest ecosystems in South Germany and southern Ecuador. Information and complexity measures are different for different parameters but ecosystems of the same type such as mountain forests exhibit similar behaviour. We hypothesise that complexity of hydraulic time series increases with the number of abiotic and biotic variables involved in the generating process of the time series. Thus, complexity should reach a minimum in the precipitation signal which is controlled by abiotic, atmospheric factors only, and reach a maximum in the root zone where the interaction of abiotic and biotic variables is high. Hydrological time series under study cover the sequence of hydrological signals from open precipitation, throughfall, sapflow, water fluxes in the soil compartment and system discharge. We detected pronounced data aggregation and transformation effects of hydrological signals along their path through subsystems in terms of information propagation. We further found similar patterns in different ecosystems of the same general type. As a result of intensive abiotic and biotic interactions, a pronounced maximum of complexity was found in the moisture signal of the soil compartment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Figs. 4–7
Figs. 8–11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

References

  • Balsley H, Øllgaard B (2002) Mapa de vegetación del sur de Ecuador. In: Aguirre MZ, Madsen JE, Cotton E, Balslev H (eds) Botánica Austroecuatoriana. Estudios sobre los recursos vegetales en las provincias de El Oro, Loja Y Zamora-Chinchipe. Ediciones Abya-Yala, Quito, Ecuador, pp 51–64

    Google Scholar 

  • Bates JE, Shephard HK (1993) Measuring complexity using information fluctuation. Phys Lett A 172:416–425. doi:10.1016/0375-9601(93)90232-O

    Article  Google Scholar 

  • Beck E, Bendix J, Kottke I, Makeschin F, Mosandl R (eds) (2008) Gradients in a tropical mountain ecosystem of Ecuador, ecological studies. Springer, Berlin

    Google Scholar 

  • Bruijnzeel LA, Hamilton LS (2000) Decision time for cloud forests. Amsterdam and WWF International, Gland, p 44

    Google Scholar 

  • Ebeling W, Freund J, Schweizer F (1998) Komplexe Strukturen: Entropie und Information. Teubner, Stuttgart

    Google Scholar 

  • Hauhs M, Lange H (1996) Ecosystem dynamics viewed from an endoperspective. Sci Total Environ 183:125–136. doi:10.1016/0048-9697(95)04969-X

    Article  CAS  Google Scholar 

  • Herzel H, Schmitt AO, Ebeling W (1994) Finite sample effects in sequence analysis. Chaos Solitons Fractals 4:97–113. doi:10.1016/0960-0779(94)90020-5

    Article  Google Scholar 

  • Hofmann M, Engelhardt S, Huwe B, Stumpp C (2009) Regionalizing hydrological soil profiles in a catchment of the Bavarian Alps. Eur J For Res. doi:10.1007/s10342-008-0242-6

  • Homeier J (2004) Baumdiversität, Waldstruktur und Wachstumsdynamik zweier tropischer Bergregenwälder in Ecuador und Costa Rica. Diss Bot 391, J. Cramer, Berlin, Germany

  • Homeier J, Dalitz H, Breckle S-W (2002) Waldstruktur und Baumartendiversität im montanen Regenwald der Estación Cientifica San Francisco in Südecuador. Ber Reinhold-Tuxen-Gesellschaft 14:109–118

    Google Scholar 

  • Hungerbühler D (1997) Neogene basins in the Andes of southern Ecuador: evolution, deformation and regional tectonic implications. Diss. no. 12371, ETH Zürich, Zürich

  • Kolmogorov AN (1965) Three approaches to the definition of the concept `quantity of information’. Probl Inform Transm 1(1):1–7

    Google Scholar 

  • Lange H (1999a) Charakterisierung ökosystemarer Zeitreihen mit nichtlinearen Methoden. Bayreuther Forum Ökologie (bfö) 65, 106 pp

  • Lange H (1999b) Time series analysis of ecosystem variables with complexity measures. Interjournal for Complex Systems. Manuscript #250. New England Complex Systems Institute, Cambridge, MA

  • Lange H, Hauhs M, Rohman C (1997) Classification of terrestrial ecosystems with complexity measures. In: Schweitzer F (ed) Self-organization of complex structures: from individual to collective dynamics. Gordon and Breach, London, pp 293–306

    Google Scholar 

  • Matyssek R, Wieser G, Patzner K, Blaschke H, Häberle K-H (2009) Transpiration of forest trees and stands at different altitude: consistencies rather than contrasts? Eur J For Res. doi:10.1007/s10342-008-0243-5

  • Matzner E (ed) (2004) Biogeochemistry of forested catchments in a changing environment—a German case study. Springer, Heidelberg, p 500

    Google Scholar 

  • Motzer T, Munz N, Küppers M, Schmitt D, Anhuf D (2005) Stomatal conductance, transpiration and sap flow of tropical montane rain forest trees in the southern Ecuadorian Andes. Tree Physiol 25:1283–1293

    CAS  PubMed  Google Scholar 

  • Patzner K (2004) Die Transpiration von Waldbäumen als Grundlage der Validierung und Modellierung der Bestandestranspiration in einem Wassereinzugsgebiet des Flusses ‘Ammer’. Dissertation, Technical University of Munich, Munich, Germany

  • Paulsch A (2002) Development and application of a classification system for undisturbed and disturbed tropical montane forests based on vegetation structure. Dissertation, University of Bayreuth, Bayreuth, Germany

  • Rényi A (1961) On measures of entropy and information. In: P. Turán (ed) Selected papers of Alfred Rényi, vol 2 (1956–1961). Akadémiai Kiadó, Budapest

  • Schmitt AO, Herzel H, Ebeling W (1993) A new method to calculate higher-order entropies from finite samples. Europhys Lett 23:303. doi:10.1209/0295-5075/23/5/001

    Article  CAS  Google Scholar 

  • Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27:379–423

    Google Scholar 

  • USDA-NRCS (1998) Keys to soil taxonomy. Pocahontas Press, Washington, DC, p 326

    Google Scholar 

  • Wackerbauer R, Witt A, Atmanspacher H, Kurts J, Scheingraber H (1994) Comparative classification of complexity measures. Chaos Solitons Fractals 4:133–173. doi:10.1016/0960-0779(94)90023-X

    Article  Google Scholar 

  • Wilcke W, Yasin S, Abramowski U, Valarezo C, Zech W (2002) Nutrient storage and turnover in organic layers under tropical montane rain forest in Ecuador. Eur J Soil Sci 53:15–27. doi:10.1046/j.1365-2389.2002.00411.x

    Article  CAS  Google Scholar 

  • Wolf F (1999) Berechnung von Information und Komplexität in Zeitreihen. Bayreuther Forum Ökologie (bfö) 65, 163 pp

  • Yasin S (2001) Water and nutrient dynamics in microcatchments under montane forest in the south Ecuadorian Andes. Bayreuther Bodenkundliche Berichte 73. Institute of Soil Science and Soil Geography, University of Bayreuth

Download references

Acknowledgments

We express our gratitude to our colleagues in the research unit of the Ammerprojekt. The workgroups of Prof. Dr. C. Bernhofer (University of Dresden), Prof. R. Matyssek (Technical University of Munich) and Dr. A. Becker (Potsdam Institute for Climate Impact Research) supported our study by contributing time series of precipitation, sapflow and catchment discharge. Especially, we thank Dr. K. Patzner from the TUM for the collaboration on the monitoring plots. We also express our gratitude to the colleagues of the research unit Ecuador who contributed time series of precipitation, sapflow and catchment discharge. The workgroups are Prof. Dr. M. Küppers (University of Hohenheim), Prof. Dr. M. Richter (University of Erlangen) and Prof. Dr. W. Wilcke (University of Mainz). Especially, we name Matthias Oesker and Christian Ohlemacher from the University of Hohenheim for their collaboration on the monitoring plot. We wish to thank the German Research Fundacion (DFG) for financial support of our projects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Huwe.

Additional information

Communicated by A. Merino.

The research reported in this article was conducted in the context of the DFG-funded umbrella project ‘Methodologies in Linking Hydrological and Biological Processes at the Landscape Level—A Contribution to IGBP/BAHC Research in Germany’ (DFG: Deutsche Forschungsgemeinschaft, German Research Foundation).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Engelhardt, S., Matyssek, R. & Huwe, B. Complexity and information propagation in hydrological time series of mountain forest catchments. Eur J Forest Res 128, 621–631 (2009). https://doi.org/10.1007/s10342-009-0306-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10342-009-0306-2

Keywords

Navigation