Skip to main content
Log in

Nonlinear mixed-effects modeling of variable-exponent taper equations for lodgepole pine in Alberta, Canada

  • Original Paper
  • Published:
European Journal of Forest Research Aims and scope Submit manuscript

Abstract

Four variable-exponent taper equations and their modified forms were evaluated for lodgepole pine (Pinus contorta var. latifolia Engelm.) trees in Alberta, Canada. A nonlinear mixed-effects modeling approach was applied to account for within- and between-tree variations in stem form. Even though a direct modeling of within-tree autocorrelation by a variance–covariance structure failed to achieve convergence, most of the autocorrelation was accounted for when random-effects parameters were included in the models. Using an independent data set, the best taper equation with two random-effects parameters was chosen based on its ability to predict diameter inside bark, whole tree volume, and sectioned log volume. Diameter measurements from various stem locations were evaluated for tree-specific calibrations by predicting random-effects parameters using an approximate Bayesian estimator. It was found that an upper stem diameter at 5.3 m above ground was best suited for calibrating tree-specific predictions of diameter inside bark, whole tree volume, and sectioned log volume.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alberta Environmental Protection (1988) Alberta Phase 3 forest inventory: tree sectioning manual. Pub. No. T/168, Alberta Environmental Protection, Edmonton

  • Burkhart HE, Watson SB (1985) Incorporating crown ratio into taper equations for loblolly pine trees. For Sci 31:478–484

    Google Scholar 

  • Calama R, Montero G (2004) Interregional nonlinear height-diameter model with random coefficients for stone pine in Spain. Can J Res 34:150–163. doi:10.1139/x03-199

    Article  Google Scholar 

  • Clutter JL, Fortson JC, Pienaar LV, Brister GH, Bailey RL (1983) Timber management: a quantitative approach. Wiley, New York

    Google Scholar 

  • Cochran WG (1963) Sampling techniques, 2nd edn. Wiley, New York

    Google Scholar 

  • Davidian M, Giltinan D (1993) Some general estimation methods for nonlinear mixed effects models. J Biopharm Stat 3:23–55. doi:10.1080/10543409308835047

    Article  PubMed  CAS  Google Scholar 

  • Davidian M, Giltinan D (1995) Nonlinear models for repeated measurement data. Chapman & Hall, New York

    Google Scholar 

  • Diggle PJ, Heagerty P, Liang KY, Zeger SL (2002) Analysis of longitudinal data. Oxford University Press, Oxford

    Google Scholar 

  • Fang Z, Bailey RL (2001) Nonlinear mixed effects modeling for slash pine dominant height growth following intensive silvicultural treatments. For Sci 47:287–300

    Google Scholar 

  • Fortin M, Ung CH, Archambault L, Bégin J (2006) Calibrating a generalized diameter distribution model with mixed effects. For Sci 52:650–658

    Google Scholar 

  • Garber SM, Maguire DA (2003) Modeling stem taper of three central Oregon species using nonlinear mixed effects models and autoregressive error structures. For Ecol Manage 179:507–522

    Article  Google Scholar 

  • Hann DW, Walters DK, Scrivani JA (1987) Incorporating crown ratio into predictive equations for Douglas-fir stem volume. Can J Res 17:17–22. doi:10.1139/x87-003

    Article  Google Scholar 

  • Hartford A, Davidian M (2000) Consequences of misspecifying assumptions in nonlinear mixed effects models. Comput Stat Data Anal 34:139–164. doi:10.1016/S0167-9473(99)00076-6

    Article  Google Scholar 

  • Huang S (1994) Ecologically based individual tree volume estimation for major Alberta tree species. Pub. No. T/288, Alberta Environmental Protection, Edmonton

  • Huang S, Price D, Morgan D, Peck K (1999) Validation of ecoregions-based taper equations for white spruce in Alberta. For Chron 75:281–292

    Google Scholar 

  • Huang S, Price D, Morgan D, Peck K (2000) Kozak’s variable-exponent taper equation regionalized for white spruce in Alberta. West J Appl For 15:75–85

    Google Scholar 

  • Husch B, Miller CI, Beers TW (1982) Forest mensuration, 3rd edn. The Roland Press Co., New York

    Google Scholar 

  • Jones RH (1990) Serial correlation or random subject effects? Commun Stat Simul Comput 19:1105–1123. doi:10.1080/03610919008812907

    Article  Google Scholar 

  • Kozak A (1988) A variable-exponent taper equation. Can J Res 18:1363–1368. doi:10.1139/x88-213

    Article  Google Scholar 

  • Kozak A (2004) My last words on taper equations. For Chron 80:507–515

    Google Scholar 

  • Kublin E, Augustin NH, Lappi J (2008) A flexible regression model for diameter prediction. Eur J For Res 127:415–428. doi:10.1007/s10342-008-0225-7

    Google Scholar 

  • Laird NM, Ware JH (1982) Random-effects models for longitudinal data. Biometrics 38:963–974. doi:10.2307/2529876

    Article  PubMed  CAS  Google Scholar 

  • Lappi J (2006) A multivariate, nonparametric stem-curve prediction method. Can J Res 36:1017–1027. doi:10.1139/X05-305

    Article  Google Scholar 

  • Leites LP, Robinson AP (2004) Improving taper equations of loblolly pine with crown dimensions in a mixed-effects modeling framework. For Sci 50:204–212

    Google Scholar 

  • Lindstrom MJ, Bates DM (1990) Nonlinear mixed-effects models for repeated measures data. Biometrics 46:673–687. doi:10.2307/2532087

    Article  PubMed  CAS  Google Scholar 

  • Littell RC, Milliken GA, Stroup WW, Wolfinger RD, Schabenberber O (2006) SAS for mixed models, 2nd edn. SAS Institute Inc., Cary

    Google Scholar 

  • Max TA, Burkhart HE (1976) Segmented polynomial regression applied to taper equations. For Sci 22:283–289

    Google Scholar 

  • Muhairwe CK, LeMay VM, Kozak A (1994) Effects of adding tree, stand, and site variables to Kozak’s variable-exponent taper equation. Can J Res 24:252–259. doi:10.1139/x94-037

    Article  Google Scholar 

  • Newnham RM (1992) Variable-form taper functions for four Alberta tree species. Can J Res 22:210–223. doi:10.1139/x92-028

    Article  Google Scholar 

  • Pinheiro JC, Bates DM (1995) Approximations to the log-likelihood function in the nonlinear mixed effects model. J Comput Graph Stat 4:12–35. doi:10.2307/1390625

    Article  Google Scholar 

  • Pinheiro JC, Bates DM (2000) Mixed-effects models in S and S-PLUS. Springer, New York

    Google Scholar 

  • Rojo A, Perales X, Sanchez-Rodriguez F, Alvarez-Gonzalez JG, von Gadow K (2005) Stem taper functions for maritime pine (Pinus pinaster Ait.) in Galicia (Northwestern Spain). Eur J For Res 124(3):177–186. doi:10.1007/s10342-005-0066-6

    Google Scholar 

  • Sharma M, Zhang SY (2004) Variable-exponent taper equations for jack pine, black spruce, and balsam fir in eastern Canada. For Ecol Manage 198:39–53

    Article  Google Scholar 

  • Sloboda VB, Gaffrey D, Matsumura N (1998) Representation of tree individual taper curves and their dynamic by spline functions and generalization by linear taper curve models. Allg Forst Jagdzeitung 169(2):29–39

    Google Scholar 

  • Tasissa G, Burkhart HE (1998) An application of mixed effects analysis to modeling thinning effects on stem profile of loblolly pine. For Ecol Manage 103:87–101

    Article  Google Scholar 

  • Trincado G, Burkhart HE (2006) A generalized approach for modeling and localizing stem profile curves. For Sci 52:670–682

    Google Scholar 

  • VanderSchaaf CL, Burkhart HE (2007) Comparison of methods to estimate Reineke’s maximum size-density relationship species boundary line slope. For Sci 53:435–442

    Google Scholar 

  • Vonesh EF (1996) A note on the use of Laplace’s approximation for nonlinear mixed-effects models. Biometrika 82:447–452. doi:10.1093/biomet/83.2.447

    Article  Google Scholar 

  • Vonesh EF, Chinchilli VM (1997) Linear and nonlinear models for the analysis of repeated measurements. Marcel Dekker Inc, New York

    Google Scholar 

  • Weiss RE (2005) Modeling longitudinal data. Springer, New York

    Google Scholar 

  • West PW, Ratkowsky DA, Davis AW (1984) Problems of hypothesis testing of regressions with multiple measurements from individual sampling units. For Ecol Manage 7:207–224

    Article  Google Scholar 

  • Wetherill GB, Duncombe P, Kenward M, Kollerstrom J, Paul SR, Vowden BJ (1986) Regression analysis with applications. Chapman & Hall, London

    Google Scholar 

  • Wolfinger RD, Lin X (1997) Two Taylor-series approximation methods for nonlinear mixed models. Comput Stat Data Anal 25:465–490. doi:10.1016/S0167-9473(97)00012-1

    Article  Google Scholar 

  • Yang Y, Huang S (2008) Modeling percent stocking changes for lodgepole pine stands in Alberta. Can J Res 38:1042–1052. doi:10.1139/X07-208

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Alberta Government and Forest Resource Improvement Association of Alberta (the FRIAA-GYPSY project). Special thanks to ten industry partners led by West Fraser Mills, Weyerhaeuser Canada (Alberta) and Canadian Forest Products, and to Mr Richard Briand, Dr Dick Dempster, and Mr Dave Morgan for project management and coordination. G. Trincado was supported by Instituto de Manejo Forestal at Universidad Austral de Chile for his contribution to this project. Special thanks to the two anonymous reviewers for their constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuqing Yang.

Additional information

Communicated by D. Mandallaz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, Y., Huang, S., Trincado, G. et al. Nonlinear mixed-effects modeling of variable-exponent taper equations for lodgepole pine in Alberta, Canada. Eur J Forest Res 128, 415–429 (2009). https://doi.org/10.1007/s10342-009-0286-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10342-009-0286-2

Keywords

Navigation