Skip to main content

Advertisement

Log in

Value of forest information

  • Original Paper
  • Published:
European Journal of Forest Research Aims and scope Submit manuscript

Abstract

Traditionally, the quality of forest inventory data has been measured with root mean square error of interesting variables. In many occasions, however, even this information has not been available for all variables of interest, as the main focus has always been on the accuracy of timber volume estimates. In recent years, the quality of data as a basis for decision-making has also been considered, using so-called cost-plus-loss analysis. In such analysis, the optimal data acquisition method is defined to be the one which minimizes the total costs of inventory, i.e., the direct inventory costs and the losses due to suboptimal decisions based on incorrect data. It would, however, be possible to go even further, and estimate the value of certain information, or even information concerning a certain forest variable/parameter in decision-making. This is possible when utilizing Bayesian decision theory. It would enable inventory researchers to concentrate on important issues, and managers to invest optimally on data acquisition process. This review presents the research carried out in valuation of information in different fields and discusses the possibilities to use it in forestry applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ades AE, Lu G, Claxton K (2004) Expected value of sample information calculations in medical decision modeling. Med Decis Making 24(2):207–227

    Article  CAS  PubMed  Google Scholar 

  • Amacher GS, Malik AS, Haight RG (2005) Nonindustrial private landowners, fires, and the wildland-urban interface. For Policy Econ 7:796–805

    Google Scholar 

  • Azondékon SH, Martel JM (1999) “Value” of additional information in multicriterion analysis under uncertainty. Eur J Oper Res 117:45–62

    Article  Google Scholar 

  • Barth A, Ståhl G (2007) Determining sampling size in a national forest inventory by cost-plus-loss analysis. In: Barth A (ed) Spatially comprehensive data for forestry scenario analysis—consequences of errors and methods to enhance usability. Doctoral thesis No 2007:101. SLU, Faculty of Forest sciences

  • Barth A, Lind T, Peterson H, Ståhl G (2006) A framework for evaluating data acquisition strategies for analyses of sustainable forestry at national level. Scand J For Res 21:94–105

    Article  Google Scholar 

  • Bateman I, Carson R, Day B, Hanemann M, Hanley N, Hett T, Jones-Lee M, Loomes G, Mourato S, Ozdemiroglu E, Pearce D, Sugden R, Swanson J (2002) Economic evaluation with stated preferences. Edward Elgar, Cheltenham

  • Bennett J, Blamey R (2001) The choice modeling approach to environmental valuation. Edward Elgar, Cheltenham

    Google Scholar 

  • Birchler U, Bütler M (2007) Information economics. Routledge advanced texts in economics and finance. Routledge, London, 462 pp

  • Burkhart HE, Stuck RD, Leuschner WA, Reynolds MA (1978) Allocating inventory resources for multiple-use planning. Can J For Res 8:100–110

    Article  Google Scholar 

  • Canavan SJ, Hann DW (2004) The two-stage method for measurement error characterization. For Sci 50:743–756

    Google Scholar 

  • Chalabi Z, Epstein D, McKenna C, Claxton K (2007) Uncertainty and value of information when allocating resources within and between healthcare programmes. Eur J Oper Res 119:530– 539

    Google Scholar 

  • Claxton KP, Sculpher M (2006) Using value of information analysis to prioritise health research. Some lessons from recent UK experience. Pharmacoeconomics 24(11):1055–1068

    Article  PubMed  Google Scholar 

  • Cochran WG (1977) Sampling techniques, 3rd edn. Wiley, New York

    Google Scholar 

  • Dakins ME, Toll JE, Small MJ, Brand KP (1996) Risk-based environmental remediation: Bayesian Monte Carlo analysis and the expected value of sample information. Risk Anal 16:67–79

    Article  CAS  PubMed  Google Scholar 

  • Duvemo K, Lämås T (2006) The influence of forest data quality on planning processes in forestry. Scand J For Res 21:327–339

    Article  Google Scholar 

  • Duvemo K, Barth A, Wallerman J (2007) Evaluating sample point imputation techniques as input in forest management planning. Can J For Res 37:2069–2079

    Article  Google Scholar 

  • Eid T (2000) Use of uncertain inventory data in forestry scenario models and consequential incorrect harvest decisions. Silva Fenn 34:89–100

    Google Scholar 

  • Eid T (2003) Model validation by means of cost-plus-loss analyses. In: Amaro A, Reed D, Soares P (eds) Modelling forest systems. CABI Publishing, Wallingford, pp 295–305

    Google Scholar 

  • Eid T, Gobakken T, Næsset E (2004) Comparing stand inventories for large areas based on photo-interpretation and laser scanning by means of cost-plus-loss analyses. Scand J For Res 19:512–523

    Article  Google Scholar 

  • Gelfand AE, Smith AFM (1990) Sampling based approaches to calculating marginal densities. J Am Stat Assoc 85:398–409

    Article  Google Scholar 

  • Gobakken T, Næsset E (2005) Weibull and percentile models for lidar-based estimation of basal area distribution. Scand J For Res 20:490–502

    Article  Google Scholar 

  • Green PJ, Murdoch DJ (1998) Exact sampling for Bayesian inference: towards general purpose algorithms. In: Bernardo JM et al (eds) Bayesian statistics, vol 6. Oxford University Press, Oxford, pp 301–321

    Google Scholar 

  • Haara A (2005) The assessment of uncertainty of updated stand-level inventory data. The uncertainty of forest management planning data in Finnish non-industrial private forestry. Dissertationes Forestales 8, University of Joensuu

  • Haara A, Korhonen K (2004) Kuvioittaisen arvioinnin luotettavuus. Metsätieteen aikakauskirja 2004:489–508

    Google Scholar 

  • Hamilton DA (1978) Specifying precision in natural resource inventories. In: Integrated inventories of renewable resources: proceedings of the workshop. USDA Forest Service, General technical report RM-55:276–281

  • Hammond JS, Keeney RL, Raiffa H (1998a) Even swaps: a rational method for making trade-offs. Harv Bus Rev 1–11

  • Hammond JS, Keeney RL, Raiffa H (1998b) Smart Choices: a practical guide to making better decisions. Harvard Business School Press, Boston

    Google Scholar 

  • Hirshleifer J, Riley JG (1979) The analytics of uncertainty and information—an expository survey. J Econ Lit 17:1375–1421

    Google Scholar 

  • Holmström H, Kallur H, Ståhl G (2003) Cost-plus-loss analyses of forest inventory strategies based on kNN-assigned reference sample plot data. Silva Fenn 37:381–398

    Google Scholar 

  • Holopainen M, Talvitie M (2006) Effects of data acquisition accuracy on timing of stand harvests and expected net present value. Silva Fenn 40:531–543

    Google Scholar 

  • Hynynen J, Ojansuu R, Hökkä H, Siipilehto J, Salminen H, Haapala P (2002) Models for predicting stand development in MELA System. Metsäntutkimuslaitoksen tiedonantoja, vol 835, 116 pp

  • Hyyppä J, Hyyppä H, Inkinen M, Engdahl M, Linko S, Yi-Hong Z (2000) Accuracy comparison of various remote sensing data sources in the retrieval of forest stand attributes. For Ecol Manage 128:109–120

    Article  Google Scholar 

  • Juntunen R (2006) Puustotiedon laadun vaikutus metsänkäsittelyn optimoinnin tuloksiin—UPM Metsän laserkeilausaineiston ja kuviotiedon vertailu. Pro Gradu. Helsingin yliopisto 76 s

  • Kangas A (1997) On the prediction bias and variance of long-term growth predictions. For Ecol Manage 96:207–216

    Article  Google Scholar 

  • Kangas A (1999) Methods for assessing the uncertainty of growth and yield predictions. Can J For Res 292:1357–1364

    Article  Google Scholar 

  • Kangas A, Kangas J, Kurttila M (2008) Decision support for forest management. Managing forest ecosystems, vol 16. Springer, Berlin

    Google Scholar 

  • Karnon J (2002) Planning of efficient allocation of research funds: an adapted application of a non-parametric Bayesian value of information analysis. Health Policy 61:329–347

    Article  PubMed  Google Scholar 

  • Kätsch C (2006) Precision forestry and information—information management a forgotten task? In: Ackerman PA, Längin DW, Antonides MC (eds) Precision forestry in plantations, semi-natural and natural forests. Proceedings of the international precision forestry symposium. Stellenbosch University, South Africa, pp 175–186

    Google Scholar 

  • Ketzenberg ME, Rosenzweig ED, Marucheck AE, Metters RD (2007) A framework for the value of information in inventory replenishment. Eur J Oper Res 182:1230–1250

    Article  Google Scholar 

  • Kim JB, Hobbs BF, Koonce JF (2003) Multicriteria Bayesian analysis of lower trophic level uncertainties and value of research in Lake Erie. Hum Ecol Risk Assess 9:1023–1057

    Article  Google Scholar 

  • Knoke T (2002) Value of complete information on red heartwood formation in beech (Fagus sylvatica). Silva Fenn 36:841–851

    Google Scholar 

  • Macauley MK (2006) The value of information: measuring the contribution of space derived earth science data to resource management. Space Policy 22:274–282

    Article  Google Scholar 

  • Mäkinen A, Kangas A, Välimäki E, Kalliovirta J, Rasinmäki J (2008) Comparison of treewise and standwise forest simulators with the aid of quantile regression. For Ecol Manage 255:2709–2717

    Article  Google Scholar 

  • Maltamo M (1997) Comparing basal area diameter distributions estimated by tree species and for the entire growing stock in a mixed stand. Silva Fenn 31:53–65

    Google Scholar 

  • Mowrer HT, Frayer WE (1986) Variance propagation in growth and yield projections. Can J For Res 16:1196–1200

    Article  Google Scholar 

  • Næsset E (2002) Predicting forest stand characteristics with airborne scanning laser using a practical two-stage procedure and field data. Remote Sens Environ 80:88–99

    Article  Google Scholar 

  • Næsset E (2004) Accuracy of forest inventory using airborne laser-scanning: evaluating the first Nordic full-scale operational project. Scand J For Res 19:554–557

    Article  Google Scholar 

  • Nohr H (2001) Management der Informationsqualität. Working papers knowledge management Nr. 3. Fachhochschule Stuttgart, Studiengang Informationwirtschaft, 22 pp

  • Ojansuu R, Hynynen J, Koivunen J, Luoma P (1991) Luonnonprosessit metsälaskelmassa (MELA)—Metsä 2000versio. Metsäntutkimuslaitoksen tiedonantoja, vol 385, 59 pp

  • Päivinen R (1987) Metsän inventoinnin suunnittelumalli. Summary: a planning model for forest inventory. University of Joensuu, Publications in Sciences No. 11, 179 pp

  • Raiffa H, Schlaiffer R (1967) Applied statistical decision theory. Wiley, New York

    Google Scholar 

  • Rolph P, Bartram P (1994) The information agenda: harnessing relevant information in a changing business environment. Management Books 2000, London

  • Rosenthal JS (2007) AMCMC: an R interface for adaptive MCMC. Short communication. Comput Stat Data Anal 51:5467–5470

    Article  Google Scholar 

  • Scott CT, Köhl M (1993) A method for comparing sampling design alternatives for extensive inventories. Mitteilungen der Eidgenössischen Forschunganstallt für Wald, Schnee und Landschaft. Band 68, Heft 1

  • Ståhl G (1994a) Optimizing the utility of forest inventory activities. Swedish University of Agricultural Sciences, Department of Biometry and Forest Management, Report 27

  • Ståhl G (1994b) Optimal forest inventory intensities under deterministic and stochastic stumpage value assumptions. Scand J For Res 9:405–412

    Article  Google Scholar 

  • Ståhl G, Carlson D, Bondesson L (1994) A method to determine optimal stand data acquisition policies. For Sci 40:630–649

    Google Scholar 

  • Temesgen H, LeMay VM, Froese KL, Marshall PL (2003) Imputing tree-lists from aerial attributes for complex stands of south-eastern British Columbia. For Ecol Manage 177:277–285

    Article  Google Scholar 

  • Tomppo E (2006a) The Finnish national forest inventory. Chapter 11, pp 179–194. In: Kangas A, Maltamo M (eds) Forest inventory, methods and applications. Managing forest ecosystems vol 10. Springer, Dordrecht, 362 pp

  • Tomppo E (2006b) The Finnish multi-source national inventory—small area estimation and map production. Chapter 12, pp 195–224. In: Kangas A, Maltamo M (eds) Forest inventory, methods and applications. Managing forest ecosystems vol 10. Springer, Dordrecht, 362 pp

  • Uuttera J, Hiltunen J, Rissanen P, Anttila P, Hyvönen P (2002) Uudet kuvioittaisen arvioinnin menetelmät—Arvio soveltuvuudesta yksityismaiden metsäsuunnitteluun. Metsätieteen Aikakauskirja 3/2002:523–531

    Google Scholar 

  • Uuttera J, Anttila P, Suvanto A, Maltamo M (2006) Yksityismetsien metsävaratiedon keruuseen soveltuvilla kaukokartoitusmenetelmillä estimoitujen puustotunnusten luotettavuus. Metsätieteen Aikakauskirja 4/2006:507–519

    Google Scholar 

  • Välimäki E (2006) Kasvumallien toiminnan validointi ylitiheissä metsiköissä. Pro gradu -työ. 62 s

  • Välimäki E, Kangas A (2009) Kasvumallien toiminnan validointi ylitiheissä metsiköissä. Metsätieteen Aikakauskirja (to appear)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annika Susanna Kangas.

Additional information

Communicated by T. Knoke.

This article belongs to the special issue “Linking Forest Inventory and Optimisation.”

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kangas, A.S. Value of forest information. Eur J Forest Res 129, 863–874 (2010). https://doi.org/10.1007/s10342-009-0281-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10342-009-0281-7

Keywords

Navigation