European Journal of Forest Research

, Volume 128, Issue 3, pp 253–263 | Cite as

Performance and nutrient dynamics of holm oak (Quercus ilex L.) seedlings in relation to nursery nutrient loading and post-transplant fertility

  • Juan A. OlietEmail author
  • María Tejada
  • K. Francis Salifu
  • Aleyda Collazos
  • Douglass F. Jacobs
Original Paper


Holm oak (Quercus ilex L.) seedlings were exponentially (E) nutrient loaded using incremental increases in fertilizer addition or conventionally (C) fertilized using a constant fertilizer rate during nursery culture. The fertility treatments (mg N plant−1) were control (0), 25E, 100E, and 100C. Subsequently, 1-year-old plants were transplanted under simulated soil fertility gradients in a greenhouse to evaluate effects of nutrient loading and post-transplant fertility on seedling performance. Post-transplant fertility consisted of fertilizing plants at two rates (0 vs. 200 mg N plant−1). A water-soluble fertilizer 20-20-20 was supplied in both nursery and post-transplant experiments. Nutrient loading increased plant N content by 73% in 100E and by 75% in 100C relative to controls, although no significant differences were detected between constant and exponential fertilization regimes at the 100 mg N plant−1 rate. When transplanted, nutrient loading promoted post-transplant root growth relative to shoot, implicating potential to confer competitive advantage to loaded holm oak seedlings after trans-planting. In contrast, post-transplant fertility increased new shoot dry mass by 140% as well as N, P and K content relative to controls. Results suggest that holm oak seedlings can be successfully nutrient loaded in the nursery at higher fertility rates, improving its potential to extend new roots, but alternative fertilization regimes and schedules that better fit nutrient availability to the growth rhythm and conservative strategy of this species must be tested.


Exponential fertilization Forest restoration Nitrogen Mineral nutrition Remobilization 



We gratefully acknowledge the financial support of the University of Córdoba and Andalucía Research Programs to promote research groups activities. Additionally, this research was partially supported by MEC project AGL2006-12609-C02-01/FOR.


  1. Birge ZDK, Salifu KF, Jacobs DF (2006) Modified exponential nitrogen loading to promote morphological quality and nutrient storage of bareroot-cultured Quercus rubra and Quercus alba seedlings. Scand J For Res 21:306–316. doi: 10.1080/02827580600761611 CrossRefGoogle Scholar
  2. Boivin JR, Salifu KF, Timmer VR (2004) Late-season fertilization of Picea mariana seedlings: intensive loading and outplanting response on greenhouse bioassays. Ann For Sci 61:737–745. doi: 10.1051/forest:2004073 CrossRefGoogle Scholar
  3. Burgess D (1991) Western hemlock and Douglas-fir seedling development with exponential rates of nutrient addition. For Sci 37:54–67Google Scholar
  4. Close DC, Bail I, Hunter S, Beadle CL (2005) Effects of exponential nutrient-loading on morphological and nitrogen characteristics and on after-planting performance of Eucalyptus globulus seedlings. For Ecol Manage 205:397–403. doi: 10.1016/j.foreco.2004.10.041 CrossRefGoogle Scholar
  5. Dumroese RK, Page-Dumroese DS, Salifu KF, Jacobs DF (2005) Exponential fertilization of Pinus monticola seedlings: nutrient uptake efficiency, leaching fractions, and early outplanting performance. Can J For Res 35:2961–2967. doi: 10.1139/x05-226 CrossRefGoogle Scholar
  6. El Omari B, Aranda X, Verdaguer D, Pascual G, Fleck I (2003) Resource remobilization in Quercus ilex L. resprouts. Plant Soil 252:349–357. doi: 10.1023/A:1024792206369 CrossRefGoogle Scholar
  7. Everett KT, Hawkins BJ, Kiiskila S (2007) Growth and nutrient dynamics of Douglas-fir seedlings raise with exponential or conventional fertilization and planted with or without fertilizer. Can J For Res 37:2552–2562. doi: 10.1139/X07-108 CrossRefGoogle Scholar
  8. Gakis S, Manzanas K, Alifragis D, Papanastasis VP, Papaioannou A, Seilopoulos D, Platis P (2004) Effects of understory vegetation on tree establishment and growth in a silvopastoral system in northern Greece. Agrofor Syst 60:149–157. doi: 10.1023/ CrossRefGoogle Scholar
  9. Hanson PJ, Dickson RE, Isebrands JG, Crow TR, Dixon RK (1986) A morphological index of Quercus seedling ontogeny for use in studies of physiology and growth. Tree Physiol 2:273–281PubMedGoogle Scholar
  10. Hawkins BJ, Burgess D, Mitchell AK (2005) Growth and nutrient dynamics of western hemlock with conventional and exponential greenhouse fertilization and planning in different fertility conditions. Can J For Res 35:1002–1016. doi: 10.1139/x05-026 CrossRefGoogle Scholar
  11. Hinckley TM, Duhme F, Hinckley AR, Richter H (1983) Drought relations of shrub species. Assessment of the mechanism of drought resistance. Oecologia 59:344–350. doi: 10.1007/BF00378860 CrossRefGoogle Scholar
  12. Imo M, Timmer VR (1992) Nitrogen uptake of Mesquite seedlings at conventional and exponential fertilization schedules. Soil Sci Soc Am J 56:927–934Google Scholar
  13. Imo M, Timmer VR (1999) Vector competition analysis of black spruce seedling responses to nutrient loading and vegetation control. Can J For Res 29:474–486. doi: 10.1139/cjfr-29-4-474 CrossRefGoogle Scholar
  14. Imo M, Timmer VR (2001) Growth and nitrogen retranslocation of nutrient loaded Picea mariana seedlings planted on boreal mixedwood sites. Can J For Res 3:1357–1366. doi: 10.1139/cjfr-31-8-1357 CrossRefGoogle Scholar
  15. Ingestad T, Lund AB (1986) Theory and technique for steady state mineral nutrition and growth of plants. Scand J For Res 1:439–453CrossRefGoogle Scholar
  16. Jacobs DF, Salifu KF, Seifert JR (2005) Growth and nutritional response of hardwood seedlings to controlled-release fertilization at outplanting. For Ecol Manage 214:28–39. doi: 10.1016/j.foreco.2005.03.053 CrossRefGoogle Scholar
  17. Jobidon R, Roy V, Cyr G (2003) Net effect of competing vegetation on selected environmental conditions and performance of four spruce seedling stock sizes after eight years in Quebec (Canada). Ann For Sci 60:691–699. doi: 10.1051/forest:2003063 CrossRefGoogle Scholar
  18. Malik V, Timmer VR (1996) Growth, nutrient dynamics, and interspecific competition of nutrient-loaded black spruce seedlings on a boreal mixedwood site. Can J For Res 26:1651–1659. doi: 10.1139/x26-186 CrossRefGoogle Scholar
  19. Mayor X, Roda F (1994) Effects of irrigation and fertilization on stem diameter growth in a Mediterranean holm oak forest. For Ecol Manage 68:119–126. doi: 10.1016/0378-1127(94)90143-0 CrossRefGoogle Scholar
  20. McAlister JA, Timmer VR (1998) Nutrient enrichment of white spruce seedlings during nursery culture and initial plantation establishment. Tree Physiol 18:195–202PubMedGoogle Scholar
  21. Ministerio de Agricultura (1994) Pesca y Alimentación. Métodos Oficiales de Análisis Secretaría General Técnica, Dirección General de Política Alimentaria, MadridGoogle Scholar
  22. Munson AD, Timmer VR (1989) Site-specific growth and nutrition of planted Picea mariana in the Ontario Clay Belt. II. Effects of nitrogen fertilization. Can J For Res 19:171–178. doi: 10.1139/x89-024 CrossRefGoogle Scholar
  23. Nambiar EKS (1987) Do nutrients retranslocate from fine roots? Can J For Res 17:913–918. doi: 10.1139/x87-143 CrossRefGoogle Scholar
  24. Oliet J, Navarro R, Contreras O (2003) Evaluación de la aplicación de mejoradores y tubos en repoblaciones forestales. Consejería de Medio Ambiente de la Junta de Andalucía, SevillaGoogle Scholar
  25. Oliet J, Planelles R, Segura ML, Artero F, Jacobs DF (2004) Mineral nutrition and growth of containerized Pinus halepensis seedlings under controlled-release fertilization. Sci Hortic 103:113–129. doi: 10.1016/j.scienta.2004.04.019 CrossRefGoogle Scholar
  26. Oliet JA, Valdecantos A, Puértolas J, Trubat R (2006) Influencia del estado nutricional y el contenido en carbohidratos en el establecimiento de los plantones. In: Cortina J, Peñuelas JL, Puértolas J, Savé J, Vilagrosa A (Coords) Calidad de planta forestal para la restauración en ambientes mediterráneos degradados. Estado actual de conocimientos. Organismo Autónomo Parques Nacionales, Ministerio de Medio Ambiente, Madrid, pp 89–117Google Scholar
  27. Pardos M, Royo A, Pardos JA (2005) Growth, nutrient, water relations, and gas exchange in a holm oak plantation in response to irrigation and fertilization. New For 30:75–94. doi: 10.1007/s11056-004-2553-x Google Scholar
  28. Peñuelas J, Ocaña L (1996) Cultivo de plantas forestales en contenedor. MAPA-Mundi Prensa, MadridGoogle Scholar
  29. Qu L, Quoreshi AM, Koike T (2003) Root growth characteristics, biomass and nutrient dynamics of seedlings of two larch species raised under different fertilization regimes. Plant Soil 255:293–302. doi: 10.1023/A:1026159709246 CrossRefGoogle Scholar
  30. Rey Benayas JM, Camacho-Cruz A (2004) Performance of Q. ilex saplings planted in abandoned Mediterranean cropland after long-term interruption of their management. For Ecol Manage 194:223–233. doi: 10.1016/j.foreco.2004.02.035 CrossRefGoogle Scholar
  31. Rodà F, Retana J, Gracia C, Belloe J (eds) (1999) Ecology of Mediterranean evergreen oak forests. Ecological studies. Springer, BerlinGoogle Scholar
  32. Romane F, Terradas J (1992) Quercus ilex L. ecosystems: functions, dynamics and management. Advances in vegetation science 13. Kluwer, DordrechtGoogle Scholar
  33. Ruiz de la Torre J (2006) Flora mayor. Organismo Autónomo Parques Nacionales, MadridGoogle Scholar
  34. Rytter L, Ericsson T, Rytter R-M (2003) Effects of demand-driven fertilization on nutrient use, root:plant ratio and field performance of Betula pendula and Picea abies. Scand J For Res 18:401–415. doi: 10.1080/02827580310001931 CrossRefGoogle Scholar
  35. Salifu KF, Jacobs DF (2006) Characterizing fertility targets and multi-element interactions in nursery culture of Quercus rubra seedlings. Ann For Sci 63:231–237. doi: 10.1051/forest:2006001 CrossRefGoogle Scholar
  36. Salifu KF, Timmer VR (2003a) Optimizing nitrogen loading in Picea mariana seedlings during nursery culture. Can J For Res 33:1287–1294. doi: 10.1139/x03-057 CrossRefGoogle Scholar
  37. Salifu KF, Timmer VR (2003b) Nitrogen retranslocation response of young Picea mariana to nitrogen-15 supply. Soil Sci Soc Am J 67:309–317CrossRefGoogle Scholar
  38. Salifu KF, Jacobs DF, Birge ZKD (2009) Nursery nitrogen loading improves field performance of bareroot oak seedlings planted on abandoned mine land. Restor Ecol (in press)Google Scholar
  39. Sanz-Perez V, Castro-Diez P, Valladares F (2007) Growth versus storage: responses of Mediterranean oak seedlings to changes in nutrient and water availabilities. Ann For Sci 64:201–210. doi: 10.1051/forest:2006104 CrossRefGoogle Scholar
  40. Sardans J, Peñuelas J, Roda F (2006a) Plasticity of leaf morphological traits, leaf nutrient content, and water capture in the Mediterranean evergreen oak Quercus ilex subsp. ballota in response to fertilization and changes in competitive conditions. Ecoscience 13:258–270. doi: 10.2980/i1195-6860-13-2-258.1 CrossRefGoogle Scholar
  41. Sardans J, Roda F, Peñuelas J (2006b) Effects of a nutrient pulse supply on nutrient status of the Mediterranean trees Quercus ilex subsp. Ballota and Pinus halepensis on different soils and under different competitive pressure. Trees (Berl) 20:619–632. doi: 10.1007/s00468-006-0077-z CrossRefGoogle Scholar
  42. Sloan JL, Jacobs DF (2008) Carbon translocation patterns associated with new root proliferation during episodic growth of transplanted Quercus rubra seedlings. Tree Physiol 28:1121–1126PubMedGoogle Scholar
  43. Staples TE, Van Rees KCJ, Van Kessel C (1999) Nitrogen competition using 15N between early successional plants and planted white spruce seedlings. Can J For Res 29:1282–1289. doi: 10.1139/cjfr-29-8-1282 CrossRefGoogle Scholar
  44. Terradas J, Savè R (1992) The influence of summer and winter stress and water relations on the distribution of Quercus ilex L. Vegetatio 99–100:137–145CrossRefGoogle Scholar
  45. Terradas J, Savè R (1999) Holm oak and holm oak forests: an introduction. In: Rodà F, Retana J, Gracia C, Bellot J (eds) Ecology of Mediterranean evergreen oak forests. Ecological studies. Springer, Berlin, pp 3–14Google Scholar
  46. Thompson DG, Pitt DG (2003) A review of Canadian forest vegetation management research and practice. Ann For Sci 60:559–572. doi: 10.1051/forest:2003060 CrossRefGoogle Scholar
  47. Timmer VR, Aidelbaum AS (1996) Manual for exponential nutrient loading of seedlings to improve outplanting performance on competitive forest sites. NODA/NFP Tech. Rep. TR25. Nat. Res. Canadian Forest Service, Sault Ste Marie, ON, CanadaGoogle Scholar
  48. Timmer VR, Armstrong G (1987) Growth and nutrition of containerized Pinus resinosa at exponentially increasing nutrient additions. Can J For Res 17:644–647. doi: 10.1139/x87-105 CrossRefGoogle Scholar
  49. Timmer VR, Armstrong G (1989) Growth and nutrition of containerized Pinus resinosa seedlings at varying moisture regimes. New For 3:171–180. doi: 10.1007/BF00021580 Google Scholar
  50. Timmer VR, Munson AD (1991) Site-specific growth and nutrient uptake of planted Picea mariana in the Ontario Clay Belt. IV. Nitrogen loading response. Can J For Res 21:1058–1065. doi: 10.1139/x91-145 CrossRefGoogle Scholar
  51. Valdecantos A, Cortina J, Vallejo VR (2006) Nutrient status and field performance of tree seedlings planted in Mediterranean degraded areas. Ann For Sci 63:249–256. doi: 10.1051/forest:2006003 CrossRefGoogle Scholar
  52. Valladares F, Martínez-Ferri E, Balaguer L, Pérez-Corona E, Manrique E (2000) Low leaf-level response to light and nutrients in Mediterranean evergreen oaks: a conservative resource-use strategy? New Phytol 148:79–91. doi: 10.1046/j.1469-8137.2000.00737.x CrossRefGoogle Scholar
  53. Vilà M, Terradas J (1995) Effect of nutrient availability and neighbours on shoot growth, resprouting and flowering of Erica multiflora. J Veg Sci 6:411–416. doi: 10.2307/3236240 CrossRefGoogle Scholar
  54. Villar-Salvador P, Planelles R, Enriquez E, Peñuelas-Rubira JL (2004a) Nursery cultivation regimes, plant functional attributes, and field performance relationships in the Mediterranean oak Quercus ilex L. For Ecol Manage 196:257–266. doi: 10.1016/j.foreco.2004.02.061 CrossRefGoogle Scholar
  55. Villar-Salvador P, Planelles R, Oliet J, Peñuelas-Rubira JL, Jacobs DF, Gonzalez M (2004b) Drought tolerance and transplanting performance of holm oak (Quercus ilex) seedlings after drought hardening in the nursery. Tree Physiol 24:1147–1155PubMedGoogle Scholar
  56. Xu XJ, Timmer VR (1998) Biomass and nutrient dynamics of Chinese fir seedlings under conventional and exponential fertilization regimes. Plant Soil 1998:313–322. doi: 10.1023/A:1004307325328 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Juan A. Oliet
    • 1
    Email author
  • María Tejada
    • 1
  • K. Francis Salifu
    • 2
  • Aleyda Collazos
    • 1
  • Douglass F. Jacobs
    • 2
  1. 1.Departamento de Silvopascicultura, E.T.S. Ingenieros de MontesUniversidad Politécnica de MadridMadridSpain
  2. 2.Department of Forestry and Natural Resources, Hardwood Tree Improvement and Regeneration CenterPurdue UniversityWest LafayetteUSA

Personalised recommendations