European Journal of Forest Research

, Volume 127, Issue 3, pp 225–234 | Cite as

Carbon sequestration in Spanish Mediterranean forests under two management alternatives: a modeling approach

  • F. BravoEmail author
  • A. Bravo-Oviedo
  • L. Diaz-Balteiro
Original Paper


Management implications associated with two different silvicultural strategies in two Spanish pine forests (Scots pine stands in northern Spain and Mediterranean Maritime pine stands in Central Spain) were explored. Whole-stand yield, growth models and individual tree equations were used to estimate carbon stock in forests under different silvicultural alternatives and site indexes. Each alternative was evaluated on the basis of the land expectation value (LEV). Results reveal the appropriateness of implementing carbon payments, because it can clearly complement traditional management objectives in economic terms. Longer rotations on the poorest sites result in a positive economic return by introducing carbon output. The proportion of carbon stock in the final harvest relative to total fixed carbon is always higher in long rotation scenarios. However, short rotation systems produce the highest values of carbon MAI regardless of site index. The impact of carbon price is higher on the Maritime pine stands than on Scots pine stands. For both the species, changes in the discount rate have a minor impact on Carbon LEV. Notwithstanding, the proportion of total LEV due to carbon is greater when the discount rate increases.


Pinus sylvestris Pinus pinaster Growth models Silviculture Kyoto protocol Carbon sequestration 



This work has been possible through research projects financed by the Spanish Education and Research Ministry (project codes AGL-2001-1780 and AGL2004-07094-C02-02) and a collaborative research agreement between the Consejería de Medio Ambiente (Junta de Castilla y León) and the University of Valladolid. Luis Diaz-Balteiro work’s in this paper was undertaken with the support of the Spanish “Comisión Interministerial de Ciencia y Tecnología” (CICYT) under the projects SEJ2005-04392 and AGL2005-04514. Robert J. Pabst (Dept of Forest Science, Oregon State University) checked the English version and provided generous linguistic advice. Helpful comments of two anonymous reviewers are also highly appreciated.


  1. Alía R, Martín R, de Miguel J, Galera RM, Agúndez D, Gordo J, Salvador L, Catalán G, Gil LA (1996) Regiones de procedencia Pinus pinaster Ait. D.G.C.N., MadridGoogle Scholar
  2. Balboa-Murias MA, Rodríguez-Soalleiro R, Merino A, Álvarez-González JG (2006) Temporal variations and distribution of carbon stocks in aboveground biomass of radiate pine and maritime pine pure stands under different silvicultural alternatives. For Ecol Manage 237:29–38CrossRefGoogle Scholar
  3. Benítez-Ponce PC (2005) Essays on the economics of forestry-based carbon mitigation, PhD thesis, Wageningen University, Wageningen, The NetherlandsGoogle Scholar
  4. Boisvenue C, Running SW (2006) Impacts of climate change on natural forest productivity-evidence since the middle of the 20th century. Glob Chang Biol 12:862–882CrossRefGoogle Scholar
  5. Bravo F, Montero G (2001) Site index estimation in Scots pine (Pinus sylvestris L.) in the High Ebro Basin (northern Spain) using soil attributes. Forestry 74(4):395–406CrossRefGoogle Scholar
  6. Bravo F, Montero G (2003) High-grading effects on Scots pine volume and basal area in pure stands in northern Spain. Ann For Sci 60(1):11–18CrossRefGoogle Scholar
  7. Bravo F, Diaz-Balteiro L (2004) Evaluation of new silvicultural alternatives for Scots pine stands in northern Spain. Ann For Sci 61(2):163–169CrossRefGoogle Scholar
  8. Bravo-Oviedo A, del Río M, Montero G (2004) Site index curves and dynamic growth model for mediterranean maritime pine (Pinus pinaster Ait.) in Spain. For Ecol Manage 201:187–197CrossRefGoogle Scholar
  9. Bravo-Oviedo A, Sterba H, del Río M, Bravo F (2006) Competition-induced mortality for Mediterranean Pinus pinaster Ait. and P. sylvestris L. For Eco Manage 222:88–98CrossRefGoogle Scholar
  10. Chen W, Chen JM, Price DT, Cihlar J (2002) Effects of stand age on net primary productivity of boreal black spruce forests in Ontario. Can J For Res 32:833–842CrossRefGoogle Scholar
  11. DGCN (1998) El Segundo Invenatrio Forestal Nacional. España. MMA-DGCN, MadridGoogle Scholar
  12. Eriksson H (1976) Yield of Norway Spruce in Sweden. Department of Forest Yield, Report number 41Google Scholar
  13. Faustmann M (1849) Berechung des Wertes welchen Waldboden sowie noch nicht haubare Holzbestände für die Waldwirtschaft besitzen. Allg Forst Jagdztg 15. Reissued in Faustmann M (1995) Calculation of the value which forest land, immature stands possess for forestry. J Forest Econ 1:7–44Google Scholar
  14. Fischlin A, Midgley GF, Price JT, Leemans R, Gopal B, Turley C, Rounsevell MDA, Dube OP, Tarazona J, Velichko AA (2007) Ecosystems, their properties, goods, and services. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Climate change 2007: impacts, adaptation and vulnerability. contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 211–272Google Scholar
  15. García JL, Gómez JA (1989) Tablas de producción de densidad variable para Pinus pinaster Ait. en el sistema central. Com INIA Serie Recursos Forestales, no 47, MadridGoogle Scholar
  16. González-Martínez SC, Bravo F (2001) Density and population structure of the natural regeneration of Scots pine (Pinus sylvestris L.) in the High Ebro Basin (Northern Spain). Ann For Sci 58:277–288CrossRefGoogle Scholar
  17. Guindeo A, García L, Peraza F, Arriaga F, Kasner C, Medina G, de Palacios P, Touza M (1997) Especies de maderas para carpintería, construcción y mobiliario. AITIM, MadridGoogle Scholar
  18. Harmon ME, Marks B (2002) Effects of silvicultural practices on carbon stores in Douglas-fir-western hemlock forests in the Pacific Nortwest, U.S.A.: results form a simulation model. Can J For Res 32(5):863–877CrossRefGoogle Scholar
  19. Hoen HF, Solberg B (1994) Potential and economic efficiency of carbon sequestration in forest biomass through silvicultural management. For Sci 40:429–451Google Scholar
  20. Krankina ON, Harmon ME (1994) The impact of intensive forest management on carbon stores in forest ecosystems. World Resour Rev 6:161–177Google Scholar
  21. Kollmann F (1959) Tecnología de la madera y sus aplicaciones / translation of second edition in German of ‘Tecnologie des Holzes und der Holzwerkstoffe : mit 1194 Abbildungen im Text und 6 Tafeln’. Springer, BerlinGoogle Scholar
  22. Laclau P (2003) Biomass and carbon sequestration of ponderosa pine plantations and native cypress forests in northwest Patagonia. For Ecol Manage 180:317–333CrossRefGoogle Scholar
  23. Montero G, Rojo A, Alía R (1992) Determinación del turno de Pinus sylvestris L. en el Sistema Central. Montes 29:42–48Google Scholar
  24. Montero G, Ruiz-Peinado R, Muñoz M (2005) Producción de biomasa y fijación de CO2 por parte de los bosques españoles. Monografías INIA: Serie Forestal no 13, Madrid, 270 ppGoogle Scholar
  25. Nabuurs GJ, Pussinen A, Karjalainen T, Erhad M, Kramer K (2002) Stemwood volume increment changes in European forests due to climate change-a simulation study with the EFISCEN model. Glob Chang Biol 8:304–316CrossRefGoogle Scholar
  26. Nicolás A, Gandullo J (1967) Estaciones ecológicas de los pinares españoles I. Pinus pinaster Ait. I.F.I.E, MadridGoogle Scholar
  27. Palahí M, Pukkala T (2003) Optimising the management of Scots pine (Pinus sylvestris L.) stands in Spain based on individual-tree models Ann. For Sci 60:105–114Google Scholar
  28. Palahí M, Pukkala T, Miina J, Montero G (2003) Individual-tree growth and mortality models for Scots pine (Pinus sylvestris L.) in north-east Spain. Ann For Sci 60:1–10CrossRefGoogle Scholar
  29. Penman J, Gytarsky M, Hiraishi T, Krug T, Kruger D, Pipatti R, Buendia L, Miwa K, Ngara T, Tanabe K, Wagner F (2003) Good practice guidance for land use, land-use change and forestry. Intergovernmental panel on climate change (IPCC)Google Scholar
  30. Persson OA (1992) A growth simulator for Scots pine (Pinus sylvestris L.) in Sweden. Deparment of Forest Yield-SLU Report, 31Google Scholar
  31. Río M, Montero G, Bravo F (2001) Analysis of diameter-density relationships and self-thinning in non-thinned even-aged Scots pine stands. For Ecol Manage 142:79–87CrossRefGoogle Scholar
  32. Robertson K, Loza-Balbuena I, Ford-Robertson J (2004) Monitoring and economic factors affecting the economic viability of afforestation for carbon sequestration projects. Environ Sci Policy 7:465–475CrossRefGoogle Scholar
  33. Rojo A, Montero G (1996) El pino silvestre en la Sierra de Guadarrama MAPA, MadridGoogle Scholar
  34. Romero C, Ríos V, Diaz-Balteiro L (1998) Optimal forest rotation age when carbon captured is considered: theory and applications. J Oper Res Soc 49:121–131CrossRefGoogle Scholar
  35. Sabaté S, Gracia CA, Sánchez A (2002) Likely effects of climate change on growth of Quercus ilex, Pinus halepensis, Pinus pinaster, pinus sylvestris and Fagus sylvatica forests in the Mediterranean region. For Ecol Manage 162:23–37CrossRefGoogle Scholar
  36. Samuelson PA (1976) Economics of forestry in an evolving society. Econ Inq 14:466–492CrossRefGoogle Scholar
  37. Schoene D, Netto N (2005) Qué significa el Protocolo de Kyoto para los bosques y la selvicultura? Unasylva 222(56):3–11Google Scholar
  38. Tassone VC, Wesseler J, Nesci FS (2004) Diverging incentives for afforestation from carbon sequestration: an economic analysis of the EU afforestation program in the south of Italy. For Policy Econ 6:567–578Google Scholar
  39. van Kooten GC, Binkley CS, Delcourt G (1995) Effect of carbon taxes and subsidies on optimal forest rotation age and supply of carbon services. Am J Agric Econ 77:365–374CrossRefGoogle Scholar
  40. Watson RT, Noble IR, Bolin B, Ravindranath NH, Verardo DJ, Dokken DJ (eds) (2000) Land Use, land-use change and Forestry. Special Report of the Inergovernmental Panel on Climate Change, Cambridge University Press, CambridgeGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.ETS Ingenierías AgrariasPalenciaSpain
  2. 2.Departamento de Sistemas y Recursos ForestalesForest Research Center CIFOR-INIAMadridSpain
  3. 3.Departamento Economía y Gestión ForestalETSI Ingenieros Montes. Ciudad Universitaria s/nMadridSpain

Personalised recommendations