European Journal of Forest Research

, Volume 126, Issue 4, pp 529–544 | Cite as

Signals of summer drought in crown condition data from the German Level I network

  • Walter SeidlingEmail author
Original Paper


Crown transparency estimates of Scots pine, Norway spruce, common beech, pedunculate and sessile oak, annually surveyed between 1990 and 2004 within a grid over Germany, provide a suitable response variable to study drought effects on forest trees. Major climatic factors, available on a monthly basis as plot-specifically interpolated values and parameters of site and stand conditions, biotic and other relevant factors were used as predictors in different cross- and length-sectional, and longitudinal models. Stand age is a considerable and most constant driver of crown transparency in all species. Pine, spruce and beech responded—mainly with a delay of 1 year—with some foliar loss in areas where there was a surplus of temperature after the generally hot and dry summer of 2003. Parallel time-series analyses delivered species-specific geographic large-scale patterns with delayed or recent precipitation deficits or temperature surpluses. Even if beech is partly responding in current years with leaf loss towards precipitation surpluses, defoliation is especially high 1 year after hot summers, partly a result of high seed sets after such summers. Crown condition of oak responds in dry and warm areas according to the drought stress hypothesis, however, in cool and wet mountainous ranges oak responds after wet summers with higher defoliation. Longitudinal approaches revealed for all 4-tree species significant relationships between crown condition and deviations from the long-term means of temperature, precipitation but also global radiation and wind speed. Results do not always match the drought stress hypothesis, however, this is not to expect considering the heterogeneous site, stand and climatic conditions across Germany. Complex interactions of climatic and biotic factors also impede simple relationships. Soil-related clusters reveal higher sensitivity of spruce and beech towards climatic drought factors on more acid soils with thin humus layers. Also clusters constructed from plot-specific courses of defoliation reveal groups with rather closer relationships like a group of pine plots in the Oberpfalz, which seems to be especially sensitive to summer drought.


Defoliation Water stress Climatic change Scots pine Norway spruce Common beech Oak Longitudinal analyses Time-series cross-sectional models 



This study was funded by the Federal Ministry of Nutrition, Agriculture and Consumers Protection. I acknowledge Prof. Dr. Andreas Linde for his forward project management and Prof. and Dir. Dr. Sigfried Anders for providing working facilities. Prof. Dr. Barbara Wolff is acknowledged for encouraging discussions and proof reading, Dr. Wolfgang Beck, Dr. Jürgen Müller, and Dr. Wolf-Ulrich Kriebitzsch and two referees for fruitful discussions and substantial hints and Dr. Uwe Starfinger for assistance with the English.


  1. Aas G, Müller B, Holdenrieder O, Sieber M (1997) Sind Stiel- und Traubeneiche zwei getrennte Arten? AFZ-Der Wald Heft 52Google Scholar
  2. Amoriello T, Costantini A (2000) Calculation of meteorological stress indices for Italian forest ecosystems. Annali Istituto sperimentale per la selvicoltura 30:117–120Google Scholar
  3. Aspinall D, Paleg LG (1981) Proline accumulation: physiological aspects. In: Paleg LG, Aspinall D (eds) The physiology and biochemistry of drought resistance in plants. Academic, Sidney, pp 215–228Google Scholar
  4. Auclair AND (2005) Patterns and general characteristics of severe forest diebacks from 1950 to 1995 in the northeastern United States. Can J For Res 35:1342–1355CrossRefGoogle Scholar
  5. bmelv (Bundesministerium für Ernährung, Landwirtschaft und Verbraucherschutz) (2006) Bericht über den Zustand des Waldes 2005. Bonn, p 67Google Scholar
  6. Bornkamm R, Faensen-Thiebes A, Niño M (2003) Die Veränderung makroskopischer symptome während des Lebenslaufes von Nadel der Kiefer (Pinus sylvestris L.). Forstw Cbl 122:376–388CrossRefGoogle Scholar
  7. Bréda N, Huc R, Granier A, Dreyer E (2006) Temperate forest trees and stand under severe drought: a review of ecophysiological responses, adaptation processes and long-term consequences. Ann For Sci 63:625–644CrossRefGoogle Scholar
  8. Bussotti F, Bottacci A Bartolesi A, Grossoni P, Tani C (1995) Morpho-anatomical alterations in leaves collected from beech trees (Fagus sylvatica L.) in conditions of natural water stress. Environ Exp Bot 35:201–213CrossRefGoogle Scholar
  9. Bussotti F, Grossoni P, Bottacci A (1997) Sclerophylly in beech (Fagus sylvatica L.) trees: its relationship with crown transparency, nutritional status and summer drought. Forestry 70:267–271CrossRefGoogle Scholar
  10. Bussotti F, Gravano P, Grossoni P, Tani C (1998) Occurrence of tannins in leaves of beech trees (Fagus sylvatica) along an ecological gradient, detected by histochemical and ultrastructural analyses. New Phytol 138:469–479CrossRefGoogle Scholar
  11. Bussotti F, Pancrazi M, Matteucci G, Gerosa G (2005) Leaf morphology and chemistry in Fagus sylvatica (beech) trees as affected by site factors and ozone: results from CONECOFOR permanent monitoring plots in Italy. Tree Physiol 25:211–219PubMedGoogle Scholar
  12. Ciais P, Reichstein M, Viovy N, Granier A, Ogée J, Allard V, Aubinet M, Buchmann N, Bernhofer C, Carrara A, Chevallier F, De Noblet N, Friend AD, Friedlingstein P, Grünwald T, Heinesch B, Keronen P, Knohl A, Krinner G, Loustau D, Manca G, Matteucci G, Miglietta F, Ourcival JM, Papale D, Pilegaard K, Rambal S, Seufert G, Soussana JF, Sanz MJ, Schulze ED, Vesalla T, Valentini R (2005) Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437:529–533PubMedCrossRefGoogle Scholar
  13. Cramer HH (1984) Über die disposition mitteleuropäischen forsten für Waldschäden. Pflanzenschutz-Nachrichten Bayer 37:97–207Google Scholar
  14. Cramer HH, Cramer-Middendorf M (1984) Untersuchungen über Zusammenhänge zwischen Schadensperioden und Klimafaktoren in mitteleuropäischen Forsten seit 1851. Pflanzenschutz-Nachrichten Bayer 37:208–334Google Scholar
  15. Czajkowski T, Bolte A (2006) Unterschiedliche reaktion deutscher und polnischer Herkünfte der Buche (Fagus sylvatica L.) auf Trockenheit. Allg Forst- u J-Ztg 177:30–40Google Scholar
  16. Dammann I, Herrmann T, Körver F, Schröck HW, Ziegler C (2001) Dauerbeobachtungsflächen Waldschäden im Level II-programm—methoden und Ergebnisse der Kronenansprache seit 1983. BMVEL, Bonn, p 85Google Scholar
  17. De Vries W, Reinds GJ, Vel EM (2003) Intensive monitoring of forest ecosystems in Europe 2. Atmospheric deposition and its impacts on soil solution. For Ecol Manage 174:97–115CrossRefGoogle Scholar
  18. Dobbertin M (2005) Tree growth as indicator of tree vitality and of tree reaction to environmental stress: a review. Eur J For Res 124:319–333Google Scholar
  19. Dobbertin M, Rigling A (2006) Pine mistletoe (Viscum album ssp. austriacum) contributes to Scots pine (Pinus sylvestris) mortality in the Rhone valley of Switzerland. For Pathol 36:309–322Google Scholar
  20. Dobbertin M, Landmann G, Pierrat JC, Müller-Edzards C (1997) Quality of crown condition data. In: Müller-Edzards C, De Vries W, Erisman JW (eds) Ten years of monitoring forest condition in Europe. Brussels, Geneva, pp 7–22Google Scholar
  21. Dobbertin M, Mayer P, Wohlgemuth T, Feldmeyer-Christe E, Graf U, Zimmermann NE, Rigling A (2005) The decline of Pinus sylvestris L. forests in the Swiss Rhone valley—a result of drought stress? Phyton 45:153–156Google Scholar
  22. Eichhorn J, Icke R, Isenberg A, Paar U, Schönfelder E (2005) Temporal development of crown condition of beech and oak as a response variable for integrated evaluations. Eur J For Res 124:335–347Google Scholar
  23. Ellenberg H (1996) Vegetation Mitteleuropas mit den Alpen. 5th edn. Ulmer, Stuttgart, p 1095Google Scholar
  24. Ellenberg H, Mayer R, Schauermann J (1986) Ökosystemforschung—Ergebnisse des Sollingprojekts. Ulmer, Stuttgart, p 507Google Scholar
  25. Epperson BK (2000) Spatial and space-time correlation in ecological models. Ecol Modell 132:63–76CrossRefGoogle Scholar
  26. Ernst F (1934) Die Bedeutung der Klimaextreme für den Waldbau in Mitteleuropa. Forstw Cbl 56:86–102Google Scholar
  27. Ewald J (2005) Ecological background of crown condition, growth and nutritional status of Picea abies (L.) Karst. in the Bavarian Alps. Eur J For Res 124:9–18Google Scholar
  28. Fahrmeir L, Pritscher L (1996) Regression analysis of forest damage by marginal models for correlated ordinal responses. Environ Ecol Stat 3:257–268CrossRefGoogle Scholar
  29. Feger KH (1993) Bedeutung von ökosysteminternen Umsätzen und Nutzungseingriffen für den Stoffhaushalt von Waldlandschaften. Freiburger Bodenkundl Abh 31, p 237Google Scholar
  30. Ferretti M (1998) Potential and limitations of visual indices of tree condition. Chemosphere 36:1031–1036CrossRefGoogle Scholar
  31. Fritts HC (1976) Tree rings and climate. Academic, London, p 576Google Scholar
  32. Gieger T (2002) Auswirkungen von Trockenheit und Entlaubung auf den Wasserhaushalt von Stiel- und Traubeneiche. Dissertation of University, Göttingen, p 106 + AnnexesGoogle Scholar
  33. Göttlein A, Pruscha H (1996) Der Einfluß von Bestandeskenngrößen, Topographie, Standort und Witterung auf die Entwicklung des Kronenzustandes im Bereich des Forstamtes Rothenbuch. Forstw Cbl 115:146–162Google Scholar
  34. Gruber F (1998) Präformierte und neoformierte Syllepsis sowie Prolepsis bei der Buche (Fagus sylvatica L.). Flora 193:369–385Google Scholar
  35. Gruber F (2003) Steuerung und Vorhersage der Fruktifikation bei der Rotbuche (Fagus sylvatica L.) für den Standort Zierenberg 38A und den Level I Flächen von Hessen durch die Witterung. Allg Forst- u Jagdztg 174:67–79Google Scholar
  36. Gruber F (2004) Steuerung des sogenannten “Battverlustes” der Buche (Fagus sylvatica L.) durch die Witterung. Allg Forst- u Jagdztg 175:83–94Google Scholar
  37. Hartmann G, Blank R (1998) Aktuelles Eichensterben in Niedersachsen—Ursachen und Gegenmaßnahmen. For Holz 53:733–735Google Scholar
  38. Heinsdorf D, Chrzon S (1997) Entwicklung der Belaubung mittelalter Buchenbestände in Nordostdeutschland von 1987 bis 1996. For Holz 52:182–189Google Scholar
  39. Hendriks CMA, van den Burg J, Oude Voshaar JH, van Leeuwen EP (1997) Relations between condition and stress factors in The Netherlands in 1995. DLO Winand Staring Centre for integrated Land, Soil and Water Research, Wageningen, report 148, p 134Google Scholar
  40. Hofmann G, Jenssen M (1997) Laubmassen und ihre Entwicklung in mitteleuropäischen Rotbuchenwäldern. Beitr Forstwirtsch Landsch ökol 31:97–103Google Scholar
  41. Hilton GM, Packham JR (2003) Variation of the masting of common beech (Fagus syslvatica L.) in northern Europe over two centuries (1800–2001). Forestry 76:319–328CrossRefGoogle Scholar
  42. Hsiao CT (1973) Plant responses to water stress. Annu Rev Plant Phyisol Plant Mol Biol 24:519–570CrossRefGoogle Scholar
  43. Innes JL (1988) Forest health surveys: problems in assessing observer objectivity. Can J For Res 18:560–565Google Scholar
  44. Innes JL (1994) The occurrence of flowering and fruiting on individual trees over three years and their effect on subsequent crown condition. Trees 8:139–150CrossRefGoogle Scholar
  45. Innes JL, Boswell RC (1988) Forest health surveys 1987. Part 2: analysis and interpretation. For Comm Bull 79, p 52 Google Scholar
  46. Innes JL, Skelly JM, Schaub M (2001) Ozone and broadleaved species. Paul Haupt, Bern, p 136Google Scholar
  47. IPCC (2001) Climate change 2001: the scientific basis. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Xiaosu D (eds) WGI report to the IPCC third assessment. Cambridge University Press, CambridgeGoogle Scholar
  48. Irvine J, Perks MP, Magnani F, Grace J (1998) The response of Pinus sylvestris to drought: stomatal control of transpiration and hydraulic conductance. Tree Physiol 18:393–402PubMedGoogle Scholar
  49. Jolly WM, Dobbertin M, Zimmermann NE (2005) Divergent vegetation growth responses to the 2003 heat wave in the Swiss Alps. Geophys Res Lett 32:L18409. doi: 10.1029/2005GL023252
  50. Kätzel R, Löffler S (2004) Stressphysiologische Reaktionen von Kiefernbeständen der Level II-Dauerbeobachtungsflächen der Bundesländer Brandenburg und Berlin im Trockenjahr 2003. Arbeitsbericht des Instituts für Forstökologie und Walderfassung (Bundesforschungsanstalt für Forst- und Holzwirtschaft) Heft 2Google Scholar
  51. Klap JM, Voshaar JO, de Vries W, Erisman JW (1997) Relationships between crown condition and stress factors. In: Müller-Edzards C, De Vries W, Erisman JW (eds) Ten years of monitoring forest condition in Europe. Brussels, Geneva, pp 277–307Google Scholar
  52. Klap JM, Voshaar JHO, de Vries W, Erisman JW (2000) Effects of environmental stress on forest crown condition in Europe. Part IV: statistical analysis of relationships. Water Air Soil Pollut 119:387–420CrossRefGoogle Scholar
  53. Klugmann K, Roloff A (1999) Ökophysiologische Bedeutung von Zweigabsprüngen (Kladopsis) unter besonderer Berücksichtigung der Symptomatologie von Quercus robur. Forstw Cbl 118:271–286Google Scholar
  54. Koch W, Maier-Maercker U (1992) Die Bedeutung des Wasserhaushalts für die Beurteilung von Waldschäden. AFZ Heft 8Google Scholar
  55. Körner C, Scheel JA, Bauer H (1979) Maximum leaf diffusive conductance in vascular plants. Photosynthetica 13:45–82Google Scholar
  56. Kouki J, Hokkanen T (1992) Long-term needle litterfall of a Scots pine Pinus sylvestris stand: relation to temperature factors. Oecologia 89:176–181Google Scholar
  57. Larcher W (2003) Physiological plant ecology. Springer, BerlinGoogle Scholar
  58. Leuzinger S, Zotz G, Asshoff R, Körner C (2005) Response of deciduous forest trees to severe drought in Central Europe. Tree Physiol 25:641–650PubMedGoogle Scholar
  59. Linder M, Cramer W (2002) German forest sector under global change: an interdisciplinary impact assessment. Forstw Cbl 121:3–17Google Scholar
  60. Lindgren M, Salemaa M, Tamminen P (2000) Forest condition in relation to environmental factors. In: Mälkönen E (ed) Forest condition in a changing environment—the Finnish case. Kluwer, Dordrecht, pp 142–155Google Scholar
  61. Lobinger G (2004) Der “Käfersommer” 2003: Ein Rückblick auf das Befallsgeschehen. LWF aktuell 43:26–27Google Scholar
  62. Lorenz M (1995) International co-operative programme on assessment of monitoring of air pollution effects on forests. Water Air Soil Pollut 85:1221–1226CrossRefGoogle Scholar
  63. Lorenz M, Seidling W, Mues V, Becher G, Fischer R (2001) Forest condition in Europe: results of the 2000 large-scale survey. UNECE EC, Geneva, Brussels, pp 1–103 + AnnexesGoogle Scholar
  64. Lorenz M, Becher G, Mues V, Fischer R, Becker R, Calatayud V, Dise N, Krause GHM, Sanz M, Ulrich E (2005) Forest condition in Europe. Work Rep Inst World For (Hamburg) 2, p 99  + AnnexesGoogle Scholar
  65. Löw M, Herbinger K, Nunn AJ, Häberle KH, Leuschner M, Heerdt C, Werner H, Wipfler P, Pretzsch H, Tausz M, Matyssek R (2006) Extraordinary drought of 2003 overrules ozone impact on adult beech trees (Fagus sylvatica). Trees 20:539–548CrossRefGoogle Scholar
  66. Lüscher D (1989) Die Blütenbildung bei Bäumen und ihre Auswirkung auf die Struktur der Krone: III. Die Fichte (Picea abies [L.] Karst). Schweiz Z Forstwes 140:813–822Google Scholar
  67. Luterbacher J, Dietrich D, Xoplaki E, Grosjean M, Wanner H (2004) European seasonal and annual temperature variability, trends, and extremes since 1500. Science 305:994–997CrossRefGoogle Scholar
  68. Lyr H, Hoffmann G (1992) Wachstum—Einflussfaktoren. In: Lyr H, Fiedler HJ, Tranquillini W (eds) Physiologie und Ökologie der Gehölze. Fischer, Jena, pp 397–438Google Scholar
  69. Martínez-Vilalta J, Piñol J (2002) Drought-induced mortality and hydraulic architecture in pine of the NE Iberian Peninsula. For Ecol Manage 161:247–256CrossRefGoogle Scholar
  70. Mather R, Freer-Smith P, Savill P (1995) Analysis of the changes in forest condition in Britain 1989 to 1992. Forestry Commission Bulletin HMSO 116, p 53Google Scholar
  71. Mizoue N, Dobbertin M (2004) Within country accuracy of tree crown transparency estimates using the image analysis system CROCO: a case study from Switzerland. Environ Modell Softw 19:1089–1095CrossRefGoogle Scholar
  72. Mues V, Seidling W (2003) Evaluations of the international cross-calibration courses 2001 and 2002. UNECE, Geneva, pp 1–78Google Scholar
  73. Musio M, Augustin N, Kahle HP, Krall E, Kublin E, Unseld R, von Wilpert K (2004) Predicting magnesium concentration in needles of silver fir and Norway spruce—a case study. Ecol Modell 179:307–316CrossRefGoogle Scholar
  74. Nebe W (1968) Über Beziehungen zwischen Klima und Wachstum der Fichte (Picea abies) in ihrem europäischen Verbreitungsgebiet. Arch f Forstw 17:1219–1238Google Scholar
  75. Neuland H, Bömelburg J, Tenhagen P (1990) Regionalstatistische analyse des Zusammenhanges zwischen Standortbedingungen und Waldschäden. Dornier GmbH, Friederichshafen, p 198Google Scholar
  76. Parks RW (1967) Efficient estimation of a system of regression equations when disturbances are both serially and contemporaneously correlated. J Am Stat Assoc 62:500–509CrossRefGoogle Scholar
  77. Programme Co-ordinating Centre (PCC) (1998) and later partial up-dates: manual on methodologies and criteria for harmonised sampling, assessment, monitoring and analysis of the effects of air pollution on forests. BFH, UN/ECE, Hamburg, GenevaGoogle Scholar
  78. Peñuelas J, Ribas A, Gimeno BS, Filella I (1999) Dependance of ozone biomonitoring on meteorological conditions of different sites in Catatonia (N.E. Spain). Environ Monit Assess 56:221–224CrossRefGoogle Scholar
  79. Peuke AD, Schraml C, Hartung W, Rennenberg H (2002) Identification of drought-sensitive beech ecotypes by physiological parameters. New Phytol 154:373–387CrossRefGoogle Scholar
  80. Rebetez M, Dobbertin M (2003) Climate change may already threaten Scots pine stands in the Swiss Alps. Theor Appl Climatol 79:1–9CrossRefGoogle Scholar
  81. Reinhard M, Rebetez M, Schlaepfer R (2005) Recent climate change: rethinking drought in the context of forest fire research in Ticino, South of Switzerland. Theor Appl Climatol. doi:  10.1007/s00704-005-0123-6
  82. Riek W, Renger M (1994) Der Wasserhaushalt der Kiefer als Funktion von Boden- und Klimaparametern in den Berliner Forsten. Forstarchiv 65:167–171Google Scholar
  83. Rigling A, Bräker O, Schneiter G, Schweingruber F (2002) Inta-annual tree-ring parameters indicating differences in drought stress of Pinus sylvestris forests within the Erico-Pinion in the Valais (Switzerland). Plant Ecol 163:105–121CrossRefGoogle Scholar
  84. Rothe M (2005) Reaktionen des Wasserhaushaltes der Fichte (Picea abies [L.] Karst.) auf extremen Trockenstress. Forstwissenschaftliche Beiträge Tharandt 23, p 149Google Scholar
  85. Rust S, Hüttl RF (1999) The effect of shoot architecture on hydraulic conductance in beech (Fagus sylvatica L.). Trees 14:39–42Google Scholar
  86. Schmidt W (2006) Zeitliche Veränderung der Fruktifikation bei der Rotbuche (Fagus sylvatica L.) in einem Kalkbuchenwald (1981–2004). Allg Forst- u J-Ztg 177:9–19Google Scholar
  87. Schmieden U (1997) Forstpflanzenphysiologie. In: Kratz W, Lohner H, Augustin S, Degen B, Lorenz M, Schall P, Schmieden U, Schweizer B (eds) Auswertung der Waldschadensforschungsergebnisse (1982–1992) zur Aufklärung komplexer Ursache-Wirkungsbeziehungen mit Hilfe systemanalytischer Methoden. UBA-Berichte Heft 6Google Scholar
  88. Seidling W (2004) Crown condition within integrated evaluations of Level II monitoring data at the German level. Eur J For Res 123:63–74Google Scholar
  89. Seidling W (2005) Outline and examples of integrated evaluations of data from the intensive (Level II) monitoring of forest ecosystems in Germany. Eur J For Res 124:273–287Google Scholar
  90. Seidling W (2006) Auswirkungen von klimatischem Trockenstress auf den Waldzustand. Arbeitsber d Inst f Waldökologie u Waldinventuren Heft 4Google Scholar
  91. Seidling W, Mues V (2005) Statistical and geostatistical modelling of the ‘preliminarily adjusted defoliation’ at the European scale. Environ Monit Assess 101:223–247PubMedCrossRefGoogle Scholar
  92. Simons S (1993) Biochemische Effekte und Symptomentwicklung bei Buchen (Fagus sylvatica L.) und Nadelgehölzen unter realen und proportional erhöhten Ozonkonzentrationen. Dissertation, LMU, München, p 132Google Scholar
  93. Skärby L, Ro-Poulsen H, Wellburn FAM, Sheppard LJ (1998) Impact of ozone on forests: a European perspective. New Phytol 139:109–122CrossRefGoogle Scholar
  94. Solberg S (2004) Summer drought: a driver for crown condition and mortality of Norway spruce in Norway. For Pathol 34:94–104Google Scholar
  95. Spiecker H (2005) Umweltveränderungen und Waldwachstum. AFZ-Der Wald Heft 9Google Scholar
  96. Steele BM, Reddy SK, Nemani RR (2005) A regression strategy for analyzing environmental data generated by spatio-temporal processes. Ecol Modell 181:93–108CrossRefGoogle Scholar
  97. Stemberger A (1996) Aufnahmetraining und Ansprachequalität. FBVA Berichte 93:143–147Google Scholar
  98. Tausz M, Bytnerowicz A, Arbaugh MJ, Wonisch A, Grill D (2001) Multivariate patterns of biochemical responses of Pinus ponderosa trees at field plots in the San Bernardino Mountains, southern California. Tree Physiol 21:329–336PubMedGoogle Scholar
  99. Webster R, Rigling A, Walthert L (1996) An analysis of crown condition of Picea, Fagus and Abies in relation to environment in Switzerland. Forestry 69:347–355CrossRefGoogle Scholar
  100. Wehrmann J (1961) Die Auswirkung der Trockenheit von 1959 auf die Nährelementversorgung bayerischer Kiefernbestände. Forstw Cbl 80:272–287CrossRefGoogle Scholar
  101. Wiedemann E (1925) Zuwachsrückgang und Wuchsstockungen der Fichte in den mittleren und unteren Höhenlagen der sächsischen Staatsforsten. Laux, Tharandt, p 190Google Scholar
  102. Wolff B, Riek W (1997): Deutscher Waldbodenbericht 1996. Ergebnisse der bundesweiten Bodenzustandserhebung im Wald von 1987 – 1993 (BZE), Band 1. BMELF (Bundesministerium für Ernährung, Landwirtschaft und Forsten), Bonn, 144 SGoogle Scholar
  103. Ziegler C (2004) Die Waldzustandserhebung zeigt nicht alles. LÖBF-Mitteilungen 4/04:16–17Google Scholar
  104. Zierl B (2004) A simulation study to analyse the relations between crown condition and drought in Switzerland. For Ecol Manage 188:25–38CrossRefGoogle Scholar
  105. Zweifel R, Zimmermann L, Zeugin F, Newbery DM (2006) Intra-annual radial growth and water relations of trees: implication towards a growth mechanism. J Exp Bot 57:1445–1459PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Institute for Forest Ecology and Forest InventoriesFederal Research Centre for Forestry and Forest ProductsEberswaldeGermany

Personalised recommendations