European Journal of Forest Research

, Volume 125, Issue 3, pp 201–212 | Cite as

CO2 fluxes of a Scots pine forest growing in the warm and dry southern upper Rhine plain, SW Germany

Original Paper


The effects of the warm and dry weather in the southern upper Rhine plain in the southwest of Germany on the carbon balance of the Scots pine forest at the permanent forest meteorological experimental site Hartheim were analysed over a 14-month period. The investigation of the net ecosystem exchange of carbon dioxide (FNEE) of the Scots pine forest started in the extraordinary hot and dry August 2003. Carbon dioxide fluxes were measured continuously using an eddy covariance system and analysed by use of the EDDYSOFT software package. After determining the temperature dependence of the forest ecosystem respiration and the daytime light dependence of the CO2 exchange, monthly and annual carbon balances of the Scots pine forest were calculated. Mean peak daytime FNEE rates observed in August and September 2003 (−6.5±3.6 μmol m−2 s−1) were drastically lower than in August and September 2004 (−11.8±5.2 μmol m−2 s−1), which did not show pronounced deviations from the mean long-term (1978–2002) climatic conditions. In August 2003, the Hartheim Scots pine forest was a distinct CO2 source (35 g C m−2). The estimates of the annual carbon sink strength of the Scots pine forest ranged between −132 g C m−2 (August 2003–July 2004) and −211 g C m−2 (October 2003–September 2004). The main uncertainty in the determination of the carbon balance of the Hartheim Scots pine forest was introduced by the frequently low turbulence levels, i.e. the friction velocity corrected night-time FNEE fluxes.


Net carbon ecosystem exchange Summer drought 2003 Pinus sylvestris L. Forest meteorological experimental site Hartheim Eddy covariance technique EDDYSOFT software package 



The study was funded within the framework of the research program of emphasis of the State of Baden-Württemberg, Germany. The authors wish to give special thanks to Axel Wellpott for his technical assistance and the two anonymous reviewers for their helpful comments.


  1. Anthoni PM, Law BE, Unsworth MH (1999) Carbon and water vapor exchange of an open-canopied ponderosa pine ecosystem. Agric Forest Meteorol 95:151–168CrossRefGoogle Scholar
  2. Anthoni PM, Unsworth MH, Law BE, Irvine J, Baldocchi DD, Van Tuyl S, Moore D (2002) Seasonal differences in carbon and water vapor exchange in young and old-growth ponderosa pine ecosystems. Agric Forest Meteorol 111:203–222CrossRefGoogle Scholar
  3. Aubinet M, Grelle A, Ibrom A, Rannik Ü, Moncrieff J, Foken T, Kowalski AS, Martin PH, Berbigier P, Bernhofer Ch, Clement R, Elbers J, Granier A, Grünwald T, Morgenstern K, Pilegaard K, Rebmann C, Snijders W, Valentini R, Vesala T (2000) Estimates of the annual net carbon and water exchange of forests: the EUROFLUX methodology. Adv Ecol Res 30:113–175CrossRefGoogle Scholar
  4. Baldocchi DD (1997) Measuring and modelling carbon dioxide and water vapour exchange over a temperate broad-leaved forest during the 1995 summer drought. Plant Cell Environ 20:1108–1121CrossRefGoogle Scholar
  5. Baldocchi DD (2003) Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future. Global Change Biol 9:479–492CrossRefGoogle Scholar
  6. Baldocchi DD, Vogel CA, Hall B (1997) Seasonal variation of carbon dioxide exchange rates above and below a boreal jack pine forest. Agric Forest Meteorol 83:147–170CrossRefGoogle Scholar
  7. Baldocchi D, Falge E, Lianhong G, Olson R, Hollinger D, Running S, Anthoni P, Bernhofer Ch, Davis K, Evans R, Fuentes J, Goldstein A, Katul G, Law B, Lee X, Malhi Y, Meyers T, Munger W, Oechel W, Paw UKT, Pilegaard K, Schmid HP, Valentini R, Verma S, Vesala T, Wilson K, Wofsy S (2001) FLUXNET: a new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bull Am Meteorol Soc 82:2415–2434CrossRefGoogle Scholar
  8. Canadell JG, Mooney HA, Baldocchi DD, Berry JA, Ehleringer JR, Field CB, Gower ST, Hollinger DY, Hunt JE, Jackson RB, Running SW, Shaver GR, Steffen W, Trumbore SE, Valentini R, Bond BY (2000) Carbon metabolism of the terrestrial biosphere: a multitechnique approach for improved understanding. Ecosystems 3:115–130CrossRefGoogle Scholar
  9. Carrara A, Kowalski AS, Neirynck J, Janssens IA, Yuste JC, Ceulemans R (2003) Net ecosystem exchange of mixed forest in Belgium over 5 years. Agric Forest Meteorol 119:209–227CrossRefGoogle Scholar
  10. Ciais P, Reichstein M, Viovy N, Granier A, Ogée J, Allard V, Aubinet M, Buchmann N, Bernhofer C, Carrara A, Chevallier F, de Noblet N, Friend AD, Friedlingstein P, Grünwald T, Heinesch B, Keronen P, Knohl A, Krinner G, Loustau D, Manca G, Matteucci G, Miglietta F, Ourcival JM, Papale D, Pilegaard K, Rambal S, Seufert G, Soussana JF, Sanz MJ, Schulze ED, Vesala T, Valentini R (2005) Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437:529–533CrossRefPubMedGoogle Scholar
  11. Eugster W, Senn W (1995) A cospectral correction model for measurement of turbulent NO2 flux. Boundary-Layer Meteorol 74:321–340CrossRefGoogle Scholar
  12. Falge E, Baldocchi D, Olson R, Anthoni P, Aubinet M, Bernhofer C, Burba G, Ceulemans R, Clement R, Dolman H, Granier A, Gross P, Grünwald T, Hollinger D, Jensen N-O, Katul G, Keronen P, Kowalski A, Ta Lai C, Law BE, Meyers T, Moncrieff J, Moors E, Munger JW, Pilegaard K, Rannik Ü, Rebmann C, Suyker A, Tenhunen J, Tu K, Verma S, Vesala T, Wilson K, Wofsy S (2001a) Gap filling strategies for defensible annual sums of net ecosystem exchange. Agric Forest Meteorol 107:43–49CrossRefGoogle Scholar
  13. Falge E, Baldocchi D, Olson R, Anthoni P, Aubinet M, Bernhofer C, Burba G, Ceulemans R, Clement R, Dolman H, Granier A, Gross P, Grünwald T, Hollinger D, Jensen N-O, Katul G, Keronen P, Kowalski A, Ta Lai C, Law BE, Meyers T, Moncrieff J, Moors E, Munger JW, Pilegaard K, Rannik Ü, Rebmann C, Suyker A, Tenhunen J, Tu K, Verma S, Vesala T, Wilson K, Wofsy S (2001b) Gap filling strategies for long term energy flux data sets. Agric Forest Meteorol 107:71–77CrossRefGoogle Scholar
  14. Fink AH, Brücher T, Krüger A, Leckebusch GC, Pinto JG, Ulbrich U (2004) The 2003 European summer heatwaves and drought—synoptic diagnosis and impacts. Weather 59:209–216CrossRefGoogle Scholar
  15. Garrat JR (1992) The atmospheric boundary layer. Cambridge University Press, CambridgeGoogle Scholar
  16. Geider RJ, Delucia EH, Falkowski PG, Finzi AC, Grime JP, Grace J, Kana TM, La Roche J, Long SP, Osborne BA, Platt T, Prentice IC, Raven JA, Schlesinger WH, Smetacek V, Stuart V, Sathyendranath S, Thomas RB, Vogelmann TC, Williams P, Woodward FI (2001) Primary productivity of planet earth: biological determinants and physical constraints in terrestrial and aquatic habitats. Global Change Biol 7:849–882CrossRefGoogle Scholar
  17. Goldstein AH, Hultman NE, Fracheboud JM, Bauer MR, Panek JA, Xu M, Qi Y, Guenther AB, Baugh W (2000) Effects of climate variability on the carbon dioxide, water, and sensible heat fluxes above a ponderosa pine forest in the Sierra Nevada (CA). Agric Forest Meteorol 101:113–129CrossRefGoogle Scholar
  18. Grant RF, Arain A, Arora V, Barr A, Black TA, Chen J, Wang S, Yuan F, Zhang Y (2005) Intercomparison of techniques to model high temperature effects on CO2 and energy exchange in temperate and boreal coniferous forests. Ecol Model 188:217–252CrossRefGoogle Scholar
  19. Greco S, Baldocchi DD (1996) Seasonal variation of CO2 and water vapour exchange rates over a temperate deciduous forest. Global Change Biol 2:183–197CrossRefGoogle Scholar
  20. Grünwald T (2003) Langfristige Beobachtung von Kohlendioxidflüssen mittels Eddy-Kovarianz-Technik über einem Altfichtenbestand im Tharandter Wald. Tharandter Klimaprotokolle, TU Dresden, Band 7Google Scholar
  21. Gu L, Falge EM, Boden T, Baldocchi DD, Black TA, Saleska SR, Suni T, Verma SB, Vesala T, Wofsy SC, Xu L (2005) Objective threshold determination for nighttime eddy flux filtering. Agric Forest Meteorol 128:179–197CrossRefGoogle Scholar
  22. Gurney KR, Law RM, Denning AS, Rayner PJ, Baker D, Bousquet P, Bruhwiler L, Chen YH, Ciais P, Fan S, Fung IY, Gloor M, Heimann M, Higuchi K, John J, Maki T, Maksyntov S, Masarie K, Peylin P, Prather M, Pak BC, Randerson J, Sarmiento J, Taguchi S, Takahashi T, Yuen CW (2002) Towards robust regional estimates of CO2 sources and sinks using atmospheric transport models. Nature 415:626–630CrossRefPubMedGoogle Scholar
  23. Hädrich F (1979) Der Wasserhaushalt einer Zweischicht-Pararendzina unter Kiefernjungbeständen im Trockengebiet am südlichen Oberrhein. Mitt dt Bodenkundl Ges 29:149–158Google Scholar
  24. Houghton RA (2001) Counting terrestrial sources and sinks of carbon. Climatic Change 48:525–534CrossRefGoogle Scholar
  25. Janssens IA, Lankreijer H, Matteucci G, Kowalski AS, Buchmann N, Epron D, Pilegaard K, Kutsch W, Longdoz B, Grünwald T, Montagnani L, Dore S, Rebmann C, Moors EJ, Grelle A, Rannik Ü, Morgenstern K, Oltchev S, Clement R, Gudmundsson J, Minerbi S, Berbigier P, Ibrom A, Moncrieff J, Aubinet M, Bernhofer C, Jensen O, Vesala T, Granier A, Schulze ED, Lindroth A, Dolman AJ, Jarvis PG, Ceulemans R, Valentini R (2001) Productivity overshadows temperature in determining soil and ecosystem respiration across European forests. Global Change Biol 7:269–278CrossRefGoogle Scholar
  26. Law BE, Baldocchi DD, Anthoni PM (1999) Below-canopy and soil CO2 fluxes in a ponderosa pine forest. Agric Forest Meteorol 94:171–188CrossRefGoogle Scholar
  27. Law BE, Waring RH, Anthoni PM, Aber JD (2000a) Measurements of gross and net ecosystem productivity and water vapour exchange of a Pinus ponderosa ecosystem, and an evaluation of two generalized models. Global Change Biol 6:155–168CrossRefGoogle Scholar
  28. Law BE, Williams M, Anthoni PM, Baldocchi DD (2000b) Measuring and modelling seasonal variation of carbon dioxide and water vapour exchange of a Pinus ponderosa forest subject to soil water deficit. Global Change Biol 6:613–630CrossRefGoogle Scholar
  29. Leclerc MY, Thurtell GW (1990) Footprint prediction of scalar fluxes using a Markovian analysis. Boundary-Layer Meteorol 52:247–258CrossRefGoogle Scholar
  30. Lindroth A, Grelle A, Morén AS (1998) Long term measurements of boreal forest carbon balance reveal large temperature sensitivity. Global Change Biol 4:443–450CrossRefGoogle Scholar
  31. Lloyd CR (1995) The effect of heterogeneous terrain on micrometeorological flux measurements: a case study from HAPEX-SAHEL. Boundary-Layer Meteorol 73:209–216CrossRefGoogle Scholar
  32. Mahli Y, Nobre AD, Grace J, Kruijt B, Pereira MGP, Culf A, Scott S (1998) Carbon dioxide transfer over a Central Amazonian rain forest. J Geophys Res 103(D24):31593–31612CrossRefGoogle Scholar
  33. Mahli Y, Baldocchi DD, Jarvis PG (1999) The carbon balance of tropical, temperate and boreal forests. Plant Cell Environ 22:715–740CrossRefGoogle Scholar
  34. Mahrt L (1998) Flux sampling errors for aircrafts and towers. J Atmos Oceanic Technol 15:415–429CrossRefGoogle Scholar
  35. Markkanen T, Rannik Ü, Keronen P, Suni T, Vesala T (2001) Eddy covariance fluxes over a boreal Scots pine forest. Boreal Environ Res 6:65–78Google Scholar
  36. Mayer H, Jaeger L, Matzarakis A, Fernbach G, Redepenning D (2000) Forstmeteorologische Messstelle Hartheim des Meteorologischen Institutes der Universität Freiburg. Ber Meteor Inst Univ Freiburg, No. 5, pp 55–83Google Scholar
  37. McMillen RT (1988) An eddy correlation technique with extended applicability to non-simple terrain. Boundary-Layer Meteorol 43:231–245CrossRefGoogle Scholar
  38. Rebetez M (2004) Summer 2003 maximum and minimum daily temperatures over a 3300 m altitudinal range in the Alps. Clim Res 27:45–50CrossRefGoogle Scholar
  39. Rebmann C (2003) Kohlendioxid-, Wasserdampf und Energieaustausch eines Fichtenwaldes in Mittelgebirgslage in Nordostbayern. Ph.D. thesis, University of BayreuthGoogle Scholar
  40. REKLIP (1995) Klimaatlas Oberrhein Mitte-Süd. Trinationale Arbeitsgemeinschaft Regio-Klima-Projekt REKLIP. IFG, OffenbachGoogle Scholar
  41. Running SW, Baldocchi DD, Turner DP, Gower ST, Bakwin PS, Hibbard KA (1999) A global terrestrial monitoring network integrating tower fluxes, flask sampling, ecosystem modeling and EOS satellite data. Remote Sens Environ 70:108–127CrossRefGoogle Scholar
  42. Sarmiento JL, Gruber N (2002) Sinks for anthropogenic carbon. Phys Today 208:30–36CrossRefGoogle Scholar
  43. Schär C, Vidale PL, Lüthi D, Frei C, Häberli C, Liniger MA, Appenzeller C (2004) The role of increasing temperature variability in European summer heatwaves. Nature 427:332–336CrossRefPubMedGoogle Scholar
  44. Schmid HP, Grimmond SB, Cropley F, Offerle B, Su HB (2000) Measurements of CO2 and energy fluxes over a mixed hardwood forest in the mid-western United States. Agric Forest Meteorol 103:357–374CrossRefGoogle Scholar
  45. Schotanus EK, Nieuwstadt FTM, de Bruin HAR (1983) Temperature measurement with a sonic anemometer and its application to heat and moisture flux. Boundary-Layer Meteorol 26:81–93CrossRefGoogle Scholar
  46. Schuepp PH, Leclerc MY, MacPherson JI, Desjardins RL (1990) Footprint prediction of scalar fluxes from analytical solutions of the diffusion equation. Boundary-Layer Meteorol 50:355–373CrossRefGoogle Scholar
  47. Staebler RM, Fitzjarrald DR (2004) Observing subcanopy CO2 advection. Agric Forest Meteorol 122:139–156CrossRefGoogle Scholar
  48. Stull RB (1988) An introduction to boundary layer meteorology. Kluwer, DordrechtCrossRefGoogle Scholar
  49. Sturm N, Reber S, Kessler A, Tenhunen JD (1996) Soil moisture variation and plant water stress at the Hartheim Scots Pine Plantation. Theor Appl Climatol 53:123–133CrossRefGoogle Scholar
  50. Thom AS (1975) Momentum, mass and heat exchange of plant communities. In: Monteith JL (ed) Vegetation and the atmosphere. Academic, LondonGoogle Scholar
  51. Valentini R (ed) (2003) Fluxes of carbon, water and energy of European forests. Ecological Studies 163. Springer, Berlin, Heidelberg, New YorkGoogle Scholar
  52. Valentini R, de Angelis P, Matteucci G, Monaco R, Dore S, Scarascia Mugnozza GE (1996) Seasonal net carbon dioxide exchange of a beech forest with the atmosphere. Global Change Biol 2:199–207CrossRefGoogle Scholar
  53. Valentini R, Matteucci G, Dolman AJ, Schulze ED, Rebmann C, Moors EJ, Granier A, Gross P, Jensen NO, Pilegaard K, Lindroth A, Grelle A, Bernhofer C, Grünwald T, Aubinet M, Ceulemans R, Kowalski AS, Vesala T, Rannik Ü, Berbigier P, Loustau D, Gudmundsson J, Thorgeirsson H, Ibrom A, Morgenstern K, Clement R, Moncrieff J, Montagnani L, Minerbi S, Jarvis PG (2000) Respiration as the main determinant of carbon balance in European forests. Nature 404:861–864CrossRefPubMedGoogle Scholar
  54. Vogt R, Bernhofer Ch, Gay LW, Jaeger L, Parlow E (1996) The available energy over a Scots pine forest: what’s up for partitioning? Theor Appl Climatol 53:23–31CrossRefGoogle Scholar
  55. Vogt R, Christen A, Rotach MW, Roth M, Satyanarayana ANV (2005) Temporal dynamics of CO2 fluxes and profiles over a Central European city. Theor Appl Climatol DOI 10.1007/s00704-005-0149-9Google Scholar
  56. Wellpott A, Imbery F, Schindler D, Mayer H (2005) Simulation of drought for a Scots pine forest (Pinus sylvestris L.) in the southern upper Rhine plain. Meteorol Zeitschrift 14:1–8CrossRefGoogle Scholar
  57. Wilson K, Goldstein A, Falge E, Aubinet M, Baldocchi D, Berbigier P, Bernhofer C, Ceulemans R, Dolman H, Field C, Grelle A, Ibrom A, Law BE, Kowalski A, Meyers T, Moncrieff J, Monson R, Oechel W, Tenhunen J, Valentini R, Verma S (2002) Energy balance closure at FLUXNET sites. Agric Forest Meteorol 113:223–243CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Meteorological InstituteUniversity of FreiburgFreiburgGermany

Personalised recommendations