Advertisement

European Journal of Forest Research

, Volume 124, Issue 4, pp 289–300 | Cite as

Exceedance of critical loads of nitrogen and sulphur and its relation to forest conditions

  • Sabine AugustinEmail author
  • Andreas Bolte
  • Marieanna Holzhausen
  • Barbara Wolff
Original Paper

Abstract

The calculation of critical loads and their exceedance is one method to describe the vulnerability of forests to environmental stress caused by anthropogenic impact. Exceedance of critical loads for acidifying inputs and nitrogen was compared to different indicators of the soil and forest conditions in the German part of the extensive forest monitoring (ICP Forests/EU Level I), including more than 1,800 plots. In addition, an empirical relationship between the C/N ratio of the forest floor humus layer (C/N Humus) and the estimated nitrogen output for ten plots of the intensive monitoring (ICP Forests/EU Level II) was established in order to estimate the potential nitrogen output on Level I plots dominated by Norway spruce. Regarding all tree species assessed, the exceedance of critical loads for nitrogen and sulphur is negatively correlated with pH and base saturation up to 30 cm soil depth. The sulphur deposition and the exceedance of critical loads are highly correlated with the sulphur content of leaves and needles, whereas the respective relations for nitrogen were lower. The crown condition was weakly positively related to the sulphur content in tree leaves and needles. For Norway spruce sites, high exceedance of critical loads for nitrogen and nitrogen deposition corresponded well with low C/N Humus. In regions with high nitrogen load and low C/N ratios in the humus layer, the calculated nitrogen output was high. The results support the concept of critical thresholds in that way that their exceedance can impair forest ecosystem functions like nitrogen retention.

Keywords

Critical load Critical limit Sulphur Nitrogen Environmental monitoring Environmental risk Sustainability 

Notes

Acknowledgements

The study was conducted within the framework of the combined project “Concept and Feasibility study for the Integrated Evaluation of Environmental Monitoring Data in Forests” (No. 0339985), funded by the German Ministry for Research and Education and supported by the German Ministry for Consumer Protection. We would like to express our thanks for all financial support. We are also grateful to Nina Eriksson for linguistic improvements, to Dr. Till Spranger for discussions and encouragement, to Dr. Thomas Gauger for deposition data and numerous discussions on the data, to Dr. Rolf Becker for fruitful discussions at the last stage of our work, and to Dr. Max Posch for good advice.

References

  1. Binkley D, Högberg P (1997) Does atmospheric deposition of nitrogen threatens Swedish forests. Forest Ecol Manage 92:119–152CrossRefGoogle Scholar
  2. Bolte A, Wolff B (2003) Einfluss von realer und potenzieller Waldbedeckung auf die Tiefenversickerung - eine bundesweite Modellstudie auf BZE-Standorten. Forst Holz 58:435–439Google Scholar
  3. Bolte A, Wolff B, Burkl G, Lehmann R, Kifinger B, Robrecht D, Zahn H (2001) Validierung von Critical Load-Überschreitungen mit Indikatoren des aktuellen Wirkungsgeschehens. Arbeitsbericht Institut für Forstökologie und Walderfassung der Bundesforschungsanstalt für Forst- und Holzwirtschaft 2001/4, Eberswalde, 289 p. (http://www.bfafh.de/bibl/cl.htm)
  4. Borken W, Matzner E (2004) Nitrate leaching in forest soils: an analysis of long-term monitoring sites in Germany. J Plant Nutr Soil Sci 167:277–283CrossRefGoogle Scholar
  5. Buberl HG, Wilpert K v, Trefz-Malcher G, Hildebrand EE (1994) Der chemische Zustand von Waldböden in Baden-Wuerttemberg Mitteilungen der Forstl. Versuchs- una Forschungsanstalt Baden-Wuerttemberg. Heft 182Google Scholar
  6. Cronan SC, Grigal DF (1995) Use of calcium/aluminium ratios as indicators of stress in forest ecosystems. J Environ Qual 24:209–226Google Scholar
  7. De Vries W (1993) Average critical loads for nitrogen and sulphur and its use in acidification abatement policy in The Netherlands. Water Air Soil Pollut 68:399–434CrossRefGoogle Scholar
  8. De Vries W, Hol A, Tjalma S, Voogd JC (1990) Vooraden en verblijftijden van elementen in een bosecosysteem: een literatuurstudie. DLO-Staring Centrum, Rapport 94, Wageningen, 205 pGoogle Scholar
  9. Dise NB, Matzner E, Gundersen P (1998) Synthesis of nitrogen pools and fluxes from European forest ecosystems. Water Air Soil Pollut 105:143–154CrossRefGoogle Scholar
  10. Dobbertin M, Brang P (2001) Crown defoliation improves tree mortality models. Forest Ecol Manage 141:271–284CrossRefGoogle Scholar
  11. Ellenberg H (1939) Über Zusammensetzung, Standort und Stoffproduktion bodenfeuchter Eichen- und Buchenmischwaldgesellschaften Nordwestdeutschlands. Mitt Florist Soziol Arbeitsgemeinschaft Niedersachsen 5:3–135Google Scholar
  12. Gauger T, Köble R, Anshelm F (2000) Kritische Luftschadstoff-Konzentrationen und Eintragsraten sowie ihre Überschreitung für Wald und Agrarökosysteme sowie naturnahe waldfreie Ökosysteme. Teil 1: Deposition Loads 1987–1989 und 1993–1995. Endbericht 29785079, im Auftrag des UmweltbundesamtesGoogle Scholar
  13. Grennfelt P, Moldan F, Alveteg M, Warfvinge P, Sverdrup H (2001) Critical loads—is there a need for a new concept? Water Air Soil Pollut Focus 1:21–27CrossRefGoogle Scholar
  14. Gundersen P, Callesen I, De Vries W (1998a) Nitrate leaching in forest ecosystems is related to forest floor C/N ratios. Environ Pollut 102:403–407CrossRefGoogle Scholar
  15. Gundersen P, Emmett BA, Kjönaas OJ, Koopmans C, Tietema A (1998b) Impact of nitrogen deposition on nitrogen cycling in forests: a synthesis of NITREX data. Forest Ecol Manage 101:37–55CrossRefGoogle Scholar
  16. Hultberg H, Skeffington R (eds) (1997) Experimental reversal of acid rain effects. The Gardsjön Roof Project. Wiley, ChichesterGoogle Scholar
  17. Jacobsen C, Rademacher P, Meesenburg H, Meiwes KJ (2003) Gehalte chemischer Elemente in Baumkompartimenten. Literaturstudie und Datensammlung. Berichte des Forschungszentrums Waldökosysteme, Reihe B, Bd. 69Google Scholar
  18. Kimmins, JP, Binkley D, Chaterpaul L, De Catanzaro J (1985) Biogeochemistry of temperate forest ecosystems. Literature study on inventories and dynamics of biomass and nutrients. Petawawa National Forest Institute, Canada. Information Rep. PI-X-47E/FGoogle Scholar
  19. Kopp D, Schwanecke W (1994) Standörtlich-naturräumliche Grundlagen ökologiegerechter Forstwirtschaft. Grundzüge von Methode und Ergebnissen der forstlichen Standortserkundung in den fünf ostdeutschen Bundesländern. DLV, BerlinGoogle Scholar
  20. Larcher W (1984) Ökologie der Pflanzen. Verlag Eugen Ulmer, Stuttgart, 403 ppGoogle Scholar
  21. Lökke H, Bak J, Falkengren-Grerup U, Finlay RD, Ilvesniemi H, Nygaard PH, Starr M (1996) Critical loads of acidic deposition for forest soils: is the current approach adequate? Ambio 25:510–516Google Scholar
  22. Lovett GM, Weathers KC, Arthur MA (2002) Control of nitrogen loss from forested watersheds by soil carbon:nitrogen ratio and tree species composition. Ecosystems 5:712–718CrossRefGoogle Scholar
  23. Matzner E, Grosholz C (1997) Beziehung zwischen NO3-Austrägen, C/N-Verhältnissen der Auflage und N-Einträgen in Fichtenwald (Picea abies Karst.)-Ökosystemen Mitteleuropas. Forstwiss Centralbl 116:39–44CrossRefGoogle Scholar
  24. MacDonald JA, Dise NB, Matzner E, Armbruster M, Gundersen P, Forsius M (2002) Nitrogen input together with ecosystem nitrogen enrichment predict nitrate leaching from European forests. Global Change 8:1028–1033CrossRefGoogle Scholar
  25. Mitchell MJ, David MB, Harrison RB (1992) Sulphur dynamics of forest ecosystems. In: Howarth RW, Stewart JWB, Ivanov MV (eds) Sulphur cycling on the continents. SCOPE 48. Wiley, ChichesterGoogle Scholar
  26. Moldan F (1999) Reversal of soil and water acidification in SW Sweden. PhD ThesisGoogle Scholar
  27. Mylona S (1996) Sulphur dioxide emissions in Europe 1880–1991 and their effect on sulphur concentrations and depositions. Tellus 48B:662–689Google Scholar
  28. Nagel H-D, Gregor H (eds) (1999) Ökologische Belastungsgrenzen—Critical Loads & Levels. Springer, Berlin, Heidelberg, New York, 259pGoogle Scholar
  29. Neumann M, Stemberger A (1990) Über Ausmass und Verteilung der Mortalität: Gegenüberstellung von Ergebnissen der Waldzustandsinventur mit früheren Untersuchungen. Forstwiss Centralbl 107:63–99Google Scholar
  30. Nilsson J, Grennfelt P (eds) (1988) Critical loads for sulphur and nitrogen. Report from a workshop held at Skokloster, Sweden, 19–24 March 1988. NORD Miljørapport 1988: 15, Nordic council of Ministers, Copenhagen, pp 225–268Google Scholar
  31. Posch M, Hettelingh J-P (2001) From critical loads to dynamic modelling. In: Modelling and mapping of critical thresholds in Europe. CCE Status Report 2001Google Scholar
  32. Posch M, Hettelingh J-P, Sverdrup HU, Bull K, De Vries W (1993) Guidelines for the computation and mapping of critical loads and exceedances of sulphur and nitrogen in Europe. In: RJ Downing J-P Hettelingh PAM de Smet (eds) Calculation and mapping of critical loads in Europe. CCE Status Report 1993, RIVM Report 259101003, Bilthoven, The Netherlands, pp 25–38Google Scholar
  33. Prentice IC, Cramer W, Harrison SP, Leemans R, Monserud RA, Solomon AM (1992) A global biome model based on plant physiology and dominance, soil properties and climate. J Biogeogr 19:117–134CrossRefGoogle Scholar
  34. Reuss JO (1983) Implications of the calcium-aluminium exchange system for the effect of acid precipitation on soils. J Environ Qual 12:591–595Google Scholar
  35. Reuss JO, Cosby BJ, Wright RF (1987) Chemical processes governing soil and water acidification. Nature 329:27–32CrossRefGoogle Scholar
  36. Seidling W (2004) Crown condition within integrated evaluations of Level II monitoring data at the German level. Eur J Forest Res 123:63–74CrossRefGoogle Scholar
  37. Singh BR (1984) Sulfate sorption by acid forest soils: 2. Sulfate adsorption isotherms with and without organic matter and oxides of aluminium and iron. Soil Sci 138:294–297CrossRefGoogle Scholar
  38. Solberg S, Kvindesland S, Aamlid D, Venn K (2002) Crown condition and needle chemistry of Norway spruce in relation to critical loads of acidity in south-eastern Norway. Water Air Soil Pollut 140:157–171CrossRefGoogle Scholar
  39. Sverdrup H, Warfvinge P (1993) The effect of soil acidification on the growth of trees, grass and herbs as expressed by the (Ca+Mg+K)/Al ratio. Rep Ecol Environ Eng 1993:2. ISSN 1104–2877Google Scholar
  40. Sykes MT, Prentice IC, Cramer W (1996) A bioclimatic model for the potential distributions of north European tree species under present and future climates. J Biogeogr 23:203–233Google Scholar
  41. Tietema A, Emmett BA, Gundersen P, Kjönaas OJ, Koopmans CJ (1998) The fate of 15N-labeled nitrogen deposition in coniferous forests. Forest Ecolo Manage 101:19–28CrossRefGoogle Scholar
  42. Ulrich B (1991) An ecosystem approach to soil acidification. In: Ulrich B, Sumner ME (eds) Soil acidity. Springer, Berlin, Heidelberg, New York, pp 28–79Google Scholar
  43. UBA (ed) (2004) Manual on methodologies and criteria for mapping critical loads and levels and air pollution effects, risks and trends. UBA-Texte 52/04Google Scholar
  44. UN-ECE (1979) Convention on long range transboundary air pollution. http://www.unece.org/env/lrtap
  45. UN-ECE (1999) Protocol to the 1979 convention on long-range transboundary air pollution to abate acidification, eutrophication and ground level ozone. http://www.unece.org/env/lrtap/full%20text/1999%20Multi.e.pdf
  46. UN-ECE (2004) Manual on methodologies and criteria for modelling and mapping critical loads and levels and air pollution effects, risks and trends. http://www.icpmapping.org
  47. UN-ECE and ICP Forests (2003) Manual on methods and criteria for harmonized sampling, assessment, monitoring and analysis of the effects of air pollution on forests. PCC of the ICP Forests, Federal Research Centre for Forestry and Forests products, BFH, Hamburg, GermanyGoogle Scholar
  48. Van Pul WAJ, Potma CJM, van Leeuwen EP, Draijers GPJ, Erismann JM (1995) EDACS: European deposition maps of acidifying components on a small scale. Model description and preliminary results. National Institute of Public health and the Environment (RIVM). Bilthoven. Report No. 722401005Google Scholar
  49. von Wilpert K, Zirlewagen D (2003) Indikatoren der N-Sättigung und des N-Austrags an BZE-Standorten im Schwarzwald. Freiburger Forstliche Forschung 49:125–135Google Scholar
  50. Wolff B, Riek W (1997) Deutscher Waldbodenbericht 1996. Ergebnisse der bundesweiten Bodenzustandserhebung im Wald von 1987–1993 (BZE). Bd. 1 und 2. Bundesministerium für Ernährung, Landwirtschaft und Forsten, editor, pp 1–144Google Scholar
  51. Wright RF, Lotse E, Semb A (1993) “RAIN” project: results after 8 years of experimentally reduced acid deposition to a whole catchment. Can J Fish Aquat Sci 50:258–268CrossRefGoogle Scholar
  52. von Zezschwitz E(1985) Qualitätsänderungen des Waldhumus. Forstwissenschaftliches Centralbl 104:205–220CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Sabine Augustin
    • 1
    Email author
  • Andreas Bolte
    • 2
  • Marieanna Holzhausen
    • 3
  • Barbara Wolff
    • 4
  1. 1.Federal Environmental AgencyDessauGermany
  2. 2.Institute of Silviculture, Dept. IGoettingen UniversityGoettingenGermany
  3. 3.Faculty of Landscape Management and Nature ConservationUniversity of Applied ScienceEberswaldeGermany
  4. 4.Faculty of ForestryUniversity of Applied ScienceEberswaldeGermany

Personalised recommendations