Skip to main content

Advertisement

Log in

Carbon and nitrogen dynamics in topsoils along forest conversion sequences in the Ore Mountains and the Saxonian lowland, Germany

  • Original Paper
  • Published:
European Journal of Forest Research Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Carbon and nitrogen stocks and their medium-term and readily decomposable fractions in topsoils were compared in relation to soil microbial biomass and activity along sequences from coniferous to deciduous stands. The study was carried out in the Ore Mountains and the Saxonian lowland, representing two typical natural regions in Saxony, Germany. In accordance with current forest conversion practices, the investigation sites represent different stands: mature conifer stands of Norway spruce (Picea abies (L.) Karst.) and Scots pine (Pinus sylvestris L.) (type A); Norway Scots spruce and pine with advanced plantings of European beech (Fagus sylvatica L.) or European beech/Common oak (Quercus petreae Liebl.) (type B); and mature deciduous stands of European beech and European beech/Common oak (type C). The investigated forest sites can be grouped into three silvicultural situations according to the development from coniferous stands to advanced plantings and finally mature deciduous forests (chronosequence A–B–C). The organic layer (L, F and H horizons) and uppermost mineral soil (0–10 cm) were analysed for potential C mineralisation, microbial biomass, concentrations of total C and N (TOC and TN) and for medium-term and readily decomposable C and N fractions, obtained by hot- and cold-water extraction respectively. The results showed an increase in organic layer thickness and mass as well as TOC and TN stocks along the forest sequences in the lowland. Yet, underplanted sites with two storeys revealed higher organic layer mass as well as TOC and TN stocks as compared to coniferous and deciduous stands. Stocks of hot- and cold-water-extractable C and N in relation to microbial biomass and its activity revealed a high turnover activity in deeper organic horizons of deciduous forests compared to coniferous stands. The stand-specific differentiation is discussed in relation to microbial biomass, litter quantity and quality and forest structure, but also with respect to the site-specific climatic factors and water budget as well as liming and fly-ash impacts. Results indicate higher dynamics in deciduous stands in the lowland especially during the initial turnover phase. The elevated microbial activity in deeper organic horizons of deciduous litter-influenced sites in spring is discussed as a specific indicator for long-term C sequestration potential as besides C mineralisation organic compounds are humified and thus, can be stored in the organic layer or in deeper soil horizons. Due to liming activities, stand-specific effects on organic matter turnover dynamics have evened out today in the Ore mountain region, but will presumably occur again once base saturation decreases. Here, the stand-specific effect on microbial biomass can currently be seen again as Cmic in the L horizon increased from spruce to beech. Our study sites in the lowland revealed no significant fly-ash impact. Differences between sites were evaluated by calculating the discriminance function. TOC and TN as well as medium-term degradable C and N were defined in this study as indicators for turnover dynamics along forest conversion sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Albers D, Migge S, Schaefer M, Scheu S (2004) Decomposition of beech leaves (Fagus sylvatica) and spruce needles (Picea abies) in pure and mixed stands of beech and spruce. Soil Biol Biochem 36:155–164

    Google Scholar 

  • Alef K (1991) Methodenhandbuch Bodenmikrobiologie. Ecomed, Landsberg

  • Amarell U (2000) Kiefernforste der Dübener Heide—Ursachen und Verlauf der Entstehung und Veränderung von Forstgesellschaften. Dissertationes Botanicae, Band 325. Gebrüder Bornträger Verlagsbuchhandlung, Berlin

  • Ammer S, Makeschin F (1994) Auswirkungen experimenteller saurer Beregnung und Kalkung auf die Regenwurmfauna (Lumbricidae, Oligochaeta) und die Humusform in einem Fichtenaltbestand (Höglwaldexperiment). Forstw Centralbl 113:70–85

    Google Scholar 

  • Anders S, Hofmann G, Müller J (1997) Wald, Boden, Wasserhaushalt. In: Werner W, Böttcher J, Isermeyer F, Langholz H-J, Schumacher W (eds) Umweltrelevante Leistungen der Forstwirtschaft. Schriftenreihe Agrarspectrum, Bd. 27. BLV, München

  • Batjes NH (1996) Total carbon and nitrogen in the soils of the world. Eur J Soil Sci 47:151–163

    Google Scholar 

  • Bauer H (1989) Nährstoffvorräte in Fichtenbeständen einer Standortseinheit im Kobernauserwald untersucht über die Altersklassen. Diplomarbeit, Universität Wien, Wien

  • Bauhus J, Paré D, Côte L (1998) Effects of tree species, stand age and soil type on soil microbial biomass and its activity in a southern boreal forest. Soil Biol Biochem 30(8/9):1077–1089

    Google Scholar 

  • Beck L (1989) Lebensraum Buchenwaldboden, 1. Bodenfauna und Streuabbau—eine Übersicht. Verhandl Gesellsch Ökol (Göttingen 1987) XVII:47–54

  • Berg B, Staaf H (1980) Decomposition rate and chemical changes of Scots pine needle litter. II. Influence of chemical composition. Ecol Bull (Stockholm) 32:373–390

    Google Scholar 

  • Berg B, Ekbohm G (1993) Decomposing needle litter in Pinus contorta (Lodgepole Pine) and Pinus sylvestris (Scots Pine) monocultural systems—is there a maximum mass loss? Scand J For Res 8:457–465

  • Bouwman AF, Leemans R (1995) The role of forest soils in the global carbon cycle. In: McFee WW, Kelly JM (eds) Carbon forms and functions in forest soils. Soil Science Society of America, Madison

  • Brady NC, Weil RR (2002) The nature and properties of soils, 13th edn. Prentice Hall, Upper Saddle River, NJ

  • Bronner H, Bachler W (1979) Der hydrolysierbare Stickstoff als Hilfsmittel für die Schätzung des Stickstoffnachlieferungsvermögens von Zuckerrübenböden. Landw Forsch 32(3):255–261

    Google Scholar 

  • Buringh P (1984) Organic carbon in soils of the world. In: Woodwell GM (ed) The role of terrestrial vegetation in the global carbon cycle, SCOPE vol. 23. John Wiley, New York, pp 91–109

  • Dise NB, Wright RF (1995) Nitrogen leaching from European forests in relation to nitrogen deposition. For Ecol Manage 71:153–161

    Google Scholar 

  • Dixon RK, Turner DP (1991) The global carbon cycle and climate change: responses and feedbacks from belowground systems. Env Pollut 73:245–262

    Google Scholar 

  • Dixon RK, Brown RA, Houghton RA, Solomon AM, Trexler MC, Wisiniewsky J (1994) Carbon pools and flux of global forest ecosystems. Science 239:185–90

    Google Scholar 

  • Entry JA, Emmingham WH (1998) Influence of forest age on forms of carbon in Douglas-fir soils in the Oregon Coast Range. Can J For Res 28:390–395

    Google Scholar 

  • Fearnside PM, Barbosa RI (1998) Soil carbon changes from conversion of forest pasture in Brazilian Amazonia. For Ecol Manage 108(1–2):147–167

    Google Scholar 

  • Fischer H, Bens O, Hüttl RF (2002) Changes in humus form, humus stock and soil organic matter distribution caused by forest conversion in the north-eastern lowlands of Germany. Forstw Centralbl 121:322–334

    Google Scholar 

  • Flanagan PW, van Cleve K (1983) Nutrient cycling in relation to decomposition and organic matter quality in taiga ecosystems. Can J For Res 13:795–817

    Google Scholar 

  • Gerighausen U (2002) Dynamik der Kohlenstoffvorräte bewirtschafteter Buchenwälder auf Sandstein. Diplomarbeit, Max-Planck-Institut für Biogeochemie, Jena

  • Gunapala N, Venette RC, Ferris H, Scow KM (1998) Effects of soil management history on the rate of organic matter decomposition. Soil Biol Biochem 30(14):1917–1927

    Google Scholar 

  • Harrison AF, Harkness DD, Rowland AP, Garnett JS, Bacon PJ (2000) Annual carbon and nitrogen fluxes in soils along the European forest transect, determined using the 14C bomb. In: Caldwell MM, Heldmaier G, Lange OL, Mooney HA, Schulze ED, Sommer U (eds) Carbon and nitrogen cycling in European forest ecosystems. Ecological studies 142. Springer, Berlin Heidelberg New York, pp 237–256

  • Heal OW, Anderson JM, Swift MJ (1997) Plant litter quality and decomposition: an historical review. In: Cadisch G, Giller KE (eds) Driven by nature: plant litter quality and decomposition. CAB International, Oxon, UK

  • Heinsdorf D (2002) Einfluss der Bewirtschaftung auf den Kohlenstoffhaushalt von Forstökosystemen im nordostdeutschen Tiefland. Beitr Forstwirtsch Landschaftsökol 36(4):168–173

    Google Scholar 

  • Hofmann G, Anders S (2002) Kohlenstoffpotenziale mitteleuropäischer Wälder. AFZ 12:605–607

    Google Scholar 

  • Houghton JT, Ding Y, Griggs DJ, Noguer M, Van Der Linden PJ, Dai X, Maskell K, Johnson CA (2001) Climate change 2001: the scientific basis. Contribution of working group I to the third assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

  • Isermeyer H (1952) Eine einfache Methode zur Bestimmung der Bodenatmung und der Karbonate im Boden. J Plant Nutr Soil Sci 56:26–38

    Google Scholar 

  • Jandl R, Sollins P (1997) Water-extractable soil carbon in relation to the belowground carbon cycle. Biol Fertil Soils 25:196–201

    Google Scholar 

  • Klose S, Makeschin F (2003) Effects of past fly ash deposition on the forest floor humus chemistry of pine stands in northeastern Germany. For Ecol Manage 183:113–126

    Google Scholar 

  • Koch J, Klose S, Makeschin F (2002) Stratigraphic and spatial differentiation of chemical properties in long-term fly ash influenced forest soils in the Dübener Heide region, Germany. Forstw Centralbl 121:157–170

    Google Scholar 

  • Köhler S, Lieber H (1972) Zur Kartierung von Schadzonen im Rauchschadensgebiet der Dübener Heide mit Hilfe der Bodenvegetation. Ingenieurarbeit, VEB Forstprojektierung, Dresden

  • Kopp D, Schwanecke W (1994) Standörtlich-naturräumliche Grundlagen ökologiegerechter Forstwirtschaft. Deutscher Landwirtschaftsverlag, Berlin

  • Körschens M, Schulz E, Behm R (1990) Heißwasserlöslicher C und N im Boden als Kriterium für das N-Nachlieferungsvermöden. Zentralbl Mikrobiol 145:305–311

    Google Scholar 

  • Körschens M, Weigel A, Schulz E (1998) Turnover of soil organic matter (SOM) and long-term balances – tools for evaluating sustainable productivity of soils. J Plant Nutr Soil Sci 161:409–424

    Google Scholar 

  • Kreutzer K (1995) Effects of forest liming on soil processes. Plant Soil 168–169:447–470

    Google Scholar 

  • Krumrei S, Feger KH, Lorenz K, Preston CM (2003) Dynamik des Massenverlustes sowie der Elementfreisetzung bei der Zersetzung von Blatt- bzw. Nadelstreu von Kiefer, Buche, Eiche und Traubenkirsche auf einem armen Sandstandort in der nördlichen Oberrheinebene. Mitt Deutsch Bodenk Ges 103:147–148

  • Landgraf D, Klose S (2002) Mobile and readily available C and N fractions and their relationship to microbial biomass and selected enzyme activities in a sandy soil under different management systems. J Plant Nutr Soil Sci 165:9–16

    Google Scholar 

  • Landgraf D, Böhm C, Makeschin F (2003) Dynamic of different C and N fractions in a Cambisol under five year succession fallow in Saxony (Germany). J Plant Nutr Soil Sci 166:319–325

    Google Scholar 

  • Leinweber P, Schulten HR, Körschens M (1995) Hot water extracted organic matter: chemical composition and temporal variations in a long-term field experiment. Biol Fertil Soil 20:17–23

    Google Scholar 

  • Lorenz K, Preston C, Raspe S, Morrison IK, Feger KH (2000) Litter decomposition and humus characteristics in Canadian and German spruce ecosystems: information from tannin analysis and 13C CPMAS NMR. Soil Biol Biochem 32:779–792

    Google Scholar 

  • Lorenz K, Preston CM, Krumrei S, Feger KH (2004) Decomposition of needle/leaf litter from Scots pine, black cherry, common oak and European beech at a conurban forest site. Eur J Forest Res 10.1007/s10342-004-0025-7

  • Mäkipää R, Karjalainen T, Pussinen A, Kellomäki S (1999) Effects of climate change and nitrogen deposition on the carbon sequestration of a forest ecosystem in the boreal zone. Can J For Res 29:1490–1501

    Google Scholar 

  • Marumozo T, Andersen JPE, Domsch KH (1982) Mineralization of nutrients from soil microbial biomass. Soil Biol Biochem 14:469–475

    Google Scholar 

  • Meentenmeyer V, Box EO, Folkoff M, Gardner J (1981) Climatic estimation of soil properties: soil pH, litter accumulation and soil organic content. Ecol Soc Am Bull 62:104

    Google Scholar 

  • Millar CS (1974) Decomposition of coniferous leaf litter. In: Dickson DCH, Pugh GJF (eds) Biology of plant litter decomposition, vol. I. Academic Press, London

  • Neumeister H, Peklo P, Niehus B (1997) Umweltbelastungen in der Region Leipzig- Halle- Bitterfeld und deren Bewertung: Immissionsbedingte Stoffeinträge. In: Feldmann R, Auge H, Flachowsky J, Klotz S, Krönert R (eds) Regeneration und nachhaltige Landnutzung- Konzepte für belastete Regionen. Springer, Berlin Heidelberg New York, pp 35–41

  • Persson T, Karlsson PS, Seyferth U, Sjöberg RM, Rudebeck A (2000) Carbon mineralisation in European forest soils. In: Schulze ED (ed) Carbon and nitrogen cycling in European forest ecosystems. Ecological studies 142. Springer, Berlin Heidelberg New York, pp 257–275

  • Post WM, Emanuel WR, Zinke PJ, Stangenberger AG (1982) Soil carbon pools and world life zones. Nature 298:156–159

    Google Scholar 

  • Prescott CE, Zabeck LM, Staley CL, Kabzems R (2000) Decomposition of broadleaf and needle litter in forests of British Columbia: influences of litter type, forest type, and litter mixtures. Can J For Res 30:1742–1750

    Google Scholar 

  • Rehfuess KE (1990) Waldböden- Entwicklung, Eigenschaften und Nutzung, 2. Aufl. Pareys Studientexte 29, Hamburg

  • Reinhardt F, Makeschin F (2003) Standörtliche Auswirkungen von Rotbuchenbeständen (“Grünen Augen”) auf ausgewählte C- und N-Parameter im Thüringer Forstamt Hummelshain. Forstw Centralbl 120:318–330

    Google Scholar 

  • Sachs L (2002) Angewandte Statistik: Anwendung statistischer Methoden. Springer, Berlin Heidelberg New York

  • Sächsische Landesanstalt für Forsten (1999) Waldumbau auf Tieflands- und Mittelgebirgsstandorten in Sachsen. Schriftenreihe, Heft 19

  • Saetre P, Brandtberg PO, Lundkvist H, Bengtsson J (1999) Soil organisms and carbon, nitrogen and phosphorus mineralisation in Norway spruce and mixed Norway spruce-birch stands. Biol Fertil Soil 28:382–388

    Google Scholar 

  • Schlesinger WH (1984) Soil organic matter: a source of atmospheric CO2. In: Woodwell GM (ed) The role of terrestrial vegetation in the global carbon cycle: measurement by remote sensing. John Wiley, New York

  • Schmidt PA, Gnüchtel A, Wagner W (1998) Zuordnung der natürlichen Waldgesellschaften zu den Standortsformengruppen (Ökogramme). Schriftenreihe der Sächsischen Landesanstalt für Forsten, Heft 15, Graupa

  • Schulze ED, Wirth C, Heiman M (2000a) Managing forests after Kyoto. Science 289:2058–2059

    Google Scholar 

  • Schulze ED, Högberg P, van Oene H, Persson T, Harrison AF, Read D, Kjøller A, Matteuch G (2000b) Interaction between the carbon and nitrogen cycles and the role of biodiversity: a synopsis study along a north-south transect through Europe. In: Schulze ED (ed) Carbon and nitrogen cycling in European forest ecosystems. Ecological studies 142. Springer, Berlin Heidelberg New York, pp 468–492

  • Schwanecke W, Kopp D (1996) Forstliche Wuchsgebiete und Wuchsbezirke im Freistaat Sachsen. Schriftenreihe LAF 8/96

  • Sedjo RA (1992) Temperate forest ecosystems in the global carbon cycle. Ambio 21:274–277

    Google Scholar 

  • Smolander A, Kitunen V (2002) Soil microbial activities and characteristics of dissolved organic C and N in relation to tree species. Soil Biol Biochem 34:651–660

    Google Scholar 

  • Soil Survey Staff (1996) Keys to soil taxonomy, 7th edn. Natural Resources Conservation Service, USDA, Washington D.C.

  • Thomasius H, Schmidt PA (1996) Wald, Forstwirtschaft und Umwelt. Economica Verlag, Bonn

  • Townsend AR, Sykes MT, Apps MJ, Fung I, Kellomäki S, Martikainen PJ, Rastetter EB, Stocks BJ, Volney WJ, Zoltai SC (1996) Natural and anthropogenically-induced variations in terrestrial carbon balance. IN: Apps M, Price D (eds) Forest ecosystems, forest management and the global carbon cycle. Springer, Berlin Heidelberg New York

  • Ulrich B, Puhe J (1994) Studie B: Auswirkungen der zukünftigen Klimaveränderungen auf mitteleuropäische Waldökosysteme und deren Rückkopplung auf den Treibhauseffekt. In: Enquete-Kommission Schutz der Erdatmosphäre des Deutschen Bundestages (eds) Studienprogramm, Bd. 2, Wälder. Economica Verlag, Bonn

  • Vance ED, Brookes PC, Jenkinson DS (1987) An extraction method for measuring soil microbial biomass C. Soil Biol Biochem 19(6):703–707

    Google Scholar 

  • Vedrova EF (1995) Carbon pools and fluxes of 25-year old coniferous and deciduous stands in middle Siberia. Water Air Soil Pollut 82:239–246

    Google Scholar 

  • Vesterdal L (1999) Influence of soil type on mass loss and nutrient release from decomposing foliage litter of beech and Norway spruce. Can J For Res 29:95–105

    Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the colleagues of the local forest service stations in Falkenberg and Heinzebank for their practical support during the investigations. We are grateful to Dr. K. Römisch for his statistical advice and Mr. S. Dammann for the carthography.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juliane Anne Koch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koch, J.A., Makeschin, F. Carbon and nitrogen dynamics in topsoils along forest conversion sequences in the Ore Mountains and the Saxonian lowland, Germany. Eur J Forest Res 123, 189–201 (2004). https://doi.org/10.1007/s10342-004-0037-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10342-004-0037-3

Keywords

Navigation