Skip to main content
Log in

Genetic Diversity and Population Structure Analysis of Apple (Malus × domestica Borkh.) Germplasm Collected from North Kashmir, India, Using SSR Markers

  • Original Article / Originalbeitrag
  • Published:
Erwerbs-Obstbau Aims and scope Submit manuscript

Abstract

Detailed characterization and documentation of apple genetic resources are crucial for genetic amelioration and germplasm management. This study was carried out to fill the missing gap in information on the genetic diversity of cultivated apple (Malus × domestica Borkh.) germplasm maintained in different orchards and fruit nurseries in different areas of the North Kashmir region. In this study, 62 genotypes collected from the North Kashmir region were screened using ten microsatellite markers. Allelic data were used to elucidate the population structure, genetic relationships, and molecular variance to define the genetic structure of the collection of diverse apple genotypes. A total of 77 alleles were amplified with an average polymorphism percentage of 87.5%, polymorphic information content (PIC) of 0.71, and resolving power (RP) of 3.58. The average genetic diversity indices observed for number of alleles (Na) = 1.67, effective number of alleles (Ne) = 1.47, Shannon’s information index (I) = 0.43, expected heterozygosity (Ho) = 0.29, and unbiased heterozygosity (µ He) = 0.3 per assay indicated a moderate level of genetic diversity. Based on Jaccardʼs similarity coefficient, a UPGMA dendrogram, and principal coordinate analysis, a widespread dispersal of genotypes into three sub-clusters showing a high degree of genetic variability within the groups was obtained. STRUCTURE analysis divided the collection into two (K = 2) sub-populations that were more or less grouped on the basis of traditionally cultivated and recently introduced genotypes mixed with a few indigenous genotypes. Analysis of molecular variance (AMOVA) showed significant variation within the populations (81%), indicating that the genotypes were the primary source of wide variation and that there was a limited genetic exchange between the genotypes, which aligns with the findings of the cluster analysis. The apple germplasm analyzed in the North Kashmir region represents an important source of genetic diversity, which can contribute significantly to germplasm management and future apple breeding programs both inside and outside the region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anand L (2000) Molecular markers and their application in horticultural crops. In: Chadha K, Ravindran P, Sahijram S (eds) Biotechnology in horticultural and plantation crops. Malhotra, New Delhi, pp 120–137

    Google Scholar 

  • Aranzana MJ, Abbassi E‑K, Howad W, Arús P (2010) Genetic variation, population structure and linkage disequilibrium in peach commercial varieties. BMC Genet 11:69. https://doi.org/10.1186/1471-2156-11-69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baraket G, Chatti K, Saddoud O et al (2011) Comparative assessment of SSR and AFLP markers for evaluation of genetic diversity and conservation of fig, Ficus carica L., genetic resources in Tunisia. Plant Mol Biol Rep 29:171–184. https://doi.org/10.1007/s11105-010-0217-x

    Article  Google Scholar 

  • Belaj A, Muñoz-Diez C, Baldoni L et al (2007) Genetic diversity and population structure of wild olives from the North-Western Mediterranean assessed by SSR markers. Ann Bot 100:449–458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cipriani G, Spadotto A, Jurman I et al (2010) The SSR-based molecular profile of 1005 grapevine (Vitis vinifera L.) accessions uncovers new synonymy and parentages, and reveals a large admixture amongst varieties of different geographic origin. Theor Appl Genet 121:1569–1585. https://doi.org/10.1007/s00122-010-1411-9

    Article  PubMed  Google Scholar 

  • Dar JA, Wani AA, Dhar MK (2019) Assessment of the genetic diversity of apple (Malus × domestica Borkh.) cultivars grown in the Kashmir valley using microsatellite markers. J King Saud Univ Sci 31:194–201

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Faramarzi S, Yadollahi A, Soltani BM (2014) Preliminary evaluation of genetic diversity among Iranian red fleshed apples using microsatellite markers. 16:373–384

  • Garkava-Gustavsson L, Kolodinska Brantestam A, Sehic J, Nybom H (2008) Molecular characterisation of indigenous Swedish apple cultivars based on SSR and S‑allele analysis. Hereditas 145:99–112. https://doi.org/10.1111/j.0018-0661.2008.02042.x

    Article  CAS  PubMed  Google Scholar 

  • Garkava-Gustavsson L, Mujaju C, Sehic J et al (2013) Genetic diversity in Swedish and Finnish heirloom apple cultivars revealed with SSR markers. Sci Hortic 162:43–48

    Article  CAS  Google Scholar 

  • Gasi F, Simon S, Pojskic N et al (2010) Genetic assessment of apple germplasm in Bosnia and Herzegovina using microsatellite and morphologic markers. Sci Hortic 126:164–171. https://doi.org/10.1016/j.scienta.2010.07.002

    Article  Google Scholar 

  • Gharghani A, Zamani Z, Talaie A et al (2009) Genetic identity and relationships of Iranian apple (Malus × domestica Borkh.) cultivars and landraces, wild malus species and representative old apple cultivars based on simple sequence repeat (SSR) marker analysis. Genet Resour Crop Evol 56:829–842. https://doi.org/10.1007/s10722-008-9404-0

    Article  CAS  Google Scholar 

  • Gross BL, Henk AD, Richards CM et al (2014) Genetic diversity in Malus × domestica (Rosaceae) through time in response to domestication. Am J Bot 101:1770–1779. https://doi.org/10.3732/ajb.1400297

    Article  PubMed  Google Scholar 

  • Guarino C, Santoro S, De Simone L et al (2006) Genetic diversity in a collection of ancient cultivars of apple (Malus × domestica Borkh.) as revealed by SSR-based fingerprinting. J Hortic Sci Biotechnol 81:39–44

    Article  CAS  Google Scholar 

  • Gulsen O, Roose ML (2001) Lemons: diversity and relationships with selected citrus genotypes as measured with nuclear genome markers. J Am Soc Hortic Sci 126:309–317. https://doi.org/10.21273/JASHS.126.3.309

    Article  CAS  Google Scholar 

  • Hammer Ø, Harper DA, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4:9

    Google Scholar 

  • Han Y, Korban SS (2010) Strategies for map-based cloning in apple. CRC Crit Rev Plant Sci 29:265–284. https://doi.org/10.1080/07352689.2010.502075

    Article  CAS  Google Scholar 

  • Hokanson SC, Szewc-McFadden AK, Lamboy WF, McFerson JR (1998) Microsatellite (SSR) markers reveal genetic identities, genetic diversity and relationships in a Malus × domestica Borkh. core subset collection. Theor Appl Genet 97:671–683

    Article  CAS  Google Scholar 

  • Izzatullayeva V, Akparov Z, Babayeva S et al (2014) Efficiency of using RAPD and ISSR markers in evaluation of genetic diversity in sugar beet. Turk J Biol 38:429–438

    Article  CAS  Google Scholar 

  • Jackson JE (2003) The biology of apples and pears. Cambridge University Press, New York

    Book  Google Scholar 

  • Kanwar SM (1987) Apples. Production technology and economics, 4th edn. Tata McGraw-Hill, New Delhi

    Google Scholar 

  • Kimura T, Shi YZ, Shoda M et al (2002) Identification of Asian pear varieties by SSR analysis. Breed Sci 52:115–121. https://doi.org/10.1270/jsbbs.52.115

    Article  CAS  Google Scholar 

  • Kong Q, Li X, Xiang C et al (2011) Genetic diversity of radish (Raphanus sativus L.) germplasm resources revealed by AFLP and RAPD markers. Plant Mol Biol Rep 29:217–223

    Article  Google Scholar 

  • Kumar C, Singh SK, Singh R et al (2019) Genetic diversity and population structure analysis of wild malus genotypes including the crabapples (M. baccata (L.) Borkh. & M. sikkimensis (Wenzig) Koehne ex C. Schneider) collected from the Indian Himalayan region using microsatellite markers. Genet Resour Crop Evol 66:1311–1326

    Article  CAS  Google Scholar 

  • Liang W, Dondini L, De Franceschi P et al (2015) Genetic diversity, population structure and construction of a core collection of apple cultivars from Italian germplasm. Plant Mol Biol Rep 33:458–473

    Article  CAS  Google Scholar 

  • Mansoor S, Ahmed N, Sharma V et al (2019) Elucidating genetic variability and population structure in Venturia inaequalis associated with apple scab diseaseusing SSR markers. PLoS ONE 14:e224300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marconi G, Ferradini N, Russi L et al (2018) Genetic characterization of the apple germplasm collection in central Italy: the value of local varieties. Front Plant Sci 9:1–17

    Article  Google Scholar 

  • Mariette S, Tavaud M, Arunyawat U et al (2010) Population structure and genetic bottleneck in sweet cherry estimated with SSRs and the gametophytic self-incompatibility locus. BMC Genet 11:77. https://doi.org/10.1186/1471-2156-11-77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin F, Dailey S, Settles AM (2010) Distributed simple sequence repeat markers for efficient mapping from maize public mutagenesis populations. Theor Appl Genet 121:697–704

    Article  CAS  PubMed  Google Scholar 

  • Modgil M, Pathani P, Chauhan A (2016) Evaluation of genetic diversity and relatedness among apple cultivars using RAPD and SSR markers. Agric Res J 53:19. https://doi.org/10.5958/2395-146X.2016.00003.X

    Article  Google Scholar 

  • Mondini L, Noorani A, Pagnotta MA (2009) Assessing plant genetic diversity by molecular tools. Diversity 1:19–35. https://doi.org/10.3390/d1010019

    Article  CAS  Google Scholar 

  • de Oliveira EJ, Oliveira GAF, Costa JL et al (2012) Genetic diversity and marker-assisted inbreeding in papaya. Sci Hortic 147:20–28. https://doi.org/10.1016/j.scienta.2012.08.031

    Article  CAS  Google Scholar 

  • Omasheva ME, Pozharsky AS, Smailov BB et al (2018) Genetic diversity of apple cultivars growing in Kazakhstan. Russ J Genet 54:176–187

    Article  CAS  Google Scholar 

  • Patzak J, Paprštein F, Henychová A, Sedlák J (2012) Comparison of genetic diversity structure analyses of SSR molecular marker data within apple (Malus × domestica) genetic resources. Genome 55:647–665. https://doi.org/10.1139/g2012-054

    Article  CAS  PubMed  Google Scholar 

  • Peakall R, Smouse PE (2012) GenAlex 6.5: genetic analysis in excel. Population genetic software for teaching and research—An update. Bioinformatics 28:2537–2539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Potts SM, Han Y, Khan MA et al (2012) Genetic diversity and characterization of a core collection of malus germplasm using simple sequence repeats (SSRs). Plant Mol Biol Rep 30:827–837

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959. https://doi.org/10.1093/genetics/155.2.945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qian G‑Z, Liu L‑F, Tang G‑G (2010) (1933) Proposal to conserve the name malus domestica against M. pumila, M. communis, M. frutescens, and Pyrus dioica (Rosaceae). Taxon 59:650–652

    Article  Google Scholar 

  • Radivojevic DD, Milivojevic JM, Oparnica CD et al (2014) Impact of early cropping on vegetative development, productivity, and fruit quality of Gala and Braeburn apple trees. Turk J Agric For 38:773–780

    Article  Google Scholar 

  • Richards CM, Volk GM, Reilley AA et al (2009) Genetic diversity and population structure in Malus sieversii, a wild progenitor species of domesticated apple. Tree Genet Genom 5:339–347

    Article  Google Scholar 

  • Rohlf FJ (2005) Numerical taxonomy and multivariate analysis system version 2.2. Exeter Software, New York

    Google Scholar 

  • Savelyeva EN, Kudryavtsev AM (2015) AFLP analysis of genetic diversity in the genus mallus Mill. (apple). Russ J Genet 51:966–973. https://doi.org/10.1134/S1022795415100154

    Article  CAS  Google Scholar 

  • Schlötterer C (2004) The evolution of molecular markers—Just a matter of fashion? Nat Rev Genet 5:63–69

    Article  PubMed  Google Scholar 

  • Silfverberg-Dilworth E, Matasci CL, Van de Weg WE et al (2006) Microsatellite markers spanning the apple (Malus x domestica Borkh.) genome. Tree Genet Genom 2:202–224. https://doi.org/10.1007/s11295-006-0045-1

    Article  Google Scholar 

  • Sönmezoğlu ÖA, Kütük A (2014) Determination of genetic diversity among Koraman apple landraces. J Food Agric Environ 12:52–54

    Google Scholar 

  • Spengler RN (2019) Origins of the apple: the role of megafaunal mutualism in the domestication of malus and rosaceous trees. Front Plant Sci 10:1–18

    Article  Google Scholar 

  • Urrestarazu J, Miranda C, Santesteban LG, Royo JB (2012) Genetic diversity and structure of local apple cultivars from Northeastern Spain assessed by microsatellite markers. Tree Genet Genom 8:1163–1180. https://doi.org/10.1007/s11295-012-0502-y

    Article  Google Scholar 

  • Wani AA, Hussain K, Zargar SA et al (2021) Assessment of the genetic diversity and population structure of apricot (Prunus armeniaca L.) germplasm of the Northwestern Himalaya using SSR markers. Plant Genet Resour 19:384–393. https://doi.org/10.1017/S1479262121000459

    Article  CAS  Google Scholar 

  • Wünsch A, Hormaza JI (2002) Cultivar identification and genetic fingerprinting of temperate fruit tree species using DNA markers. Euphytica 125:59. https://doi.org/10.1023/A:1015723805293

    Article  Google Scholar 

  • Xie R, Li X, Chai M et al (2010) Evaluation of the genetic diversity of Asian peach accessions using a selected set of SSR markers. Sci Hortic 125:622–629

    Article  CAS  Google Scholar 

  • Zargar SA, Saggoo MIS, Wani AA, Zargar SM (2022) Genetic diversity, population structure and genetic relationships in apricot (Prunus armeniaca L.) germplasm of Jammu and Kashmir, India using ISSR markers. Genet Resour Crop Evol: 1–16

  • Zargar SM, Farhat S, Mahajan R et al (2016) Unraveling the efficiency of RAPD and SSR markers in diversity analysis and population structure estimation in common bean. Saudi J Biol Sci 23:139–149. https://doi.org/10.1016/j.sjbs.2014.11.011

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, Li J, Zhao Y et al (2012) Evaluation of genetic diversity in Chinese wild apple species along with apple cultivars using SSR markers. Plant Mol Biol Rep 30:539–546

    Article  CAS  Google Scholar 

  • Zhen Y, Li Z, Huang H, Wang Y (2004) Molecular characterization of kiwifruit (actinidia) cultivars and selections using SSR markers. J Am Soc Hortic Sci 129:374–382. https://doi.org/10.21273/JASHS.129.3.0374

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Zahid Hussain acknowledges financial support from the University Grants Commission, New Delhi, India for providing a teacher fellowship to carry out the study as a part of PhD study under Letter No. 27-14 (TF)/2016 (NRCB dated 3 February 2017). The authors would like to thank the Director Horticulture Kashmir Division and various orchardists for their necessary permission and support during field surveys and collection of samples needed for the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zahid Hussain Najar.

Ethics declarations

Conflict of interest

Z.H. Najar, S.A. Zargar, M. Kashtwari and A.A. Wani declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Availability of data and materials

Data analysis details are available from the corresponding author on reasonable request.

Supplementary Information

10341_2023_974_MOESM1_ESM.docx

Supplementary Table S1: List of SSR Primers used for the genetic diversity analysis of 62 apple genotypes. Supplementary Table S2: Table S2: Assignment of individuals to the sub populations (K) based on probability.

Rights and permissions

Springer Nature oder sein Lizenzgeber (z.B. eine Gesellschaft oder ein*e andere*r Vertragspartner*in) hält die ausschließlichen Nutzungsrechte an diesem Artikel kraft eines Verlagsvertrags mit dem/den Autor*in(nen) oder anderen Rechteinhaber*in(nen); die Selbstarchivierung der akzeptierten Manuskriptversion dieses Artikels durch Autor*in(nen) unterliegt ausschließlich den Bedingungen dieses Verlagsvertrags und dem geltenden Recht.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Najar, Z.H., Zargar, S.A., Kashtwari, M. et al. Genetic Diversity and Population Structure Analysis of Apple (Malus × domestica Borkh.) Germplasm Collected from North Kashmir, India, Using SSR Markers. Erwerbs-Obstbau 65, 2207–2218 (2023). https://doi.org/10.1007/s10341-023-00974-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10341-023-00974-w

Keywords

Navigation