Skip to main content
Log in

Integrated Management of Grape Gray Mold Disease Agent Botrytis cinerea in Vitro and Post-harvest

  • Original Article / Originalbeitrag
  • Published:
Erwerbs-Obstbau Aims and scope Submit manuscript

Abstract

Gray mold caused by Botrytis cinerea is one of the most important diseases of fresh grapes in the field and during the post-harvest period. To control this disease, many fungicides are used. One of the sustainable solutions to replace chemical fungicides is using Trichoderma mycoparasite, medicinal plant essential oils, and new chemical fungicides. In the B. cinerea pathogenesis test, most of them showed the ability to cause disease, and among them the A91 isolate showed the highest pathogenicity. In a cross-culture experiment, most isolates of Trichoderma grew on the A91 isolate colony, and among them, the T39 isolate with 72.47% inhibition showed the highest inhibitory power. Regarding the effect of volatile metabolites, the maximum inhibition rate by the G2 isolate of the T. harzianum antagonist was 42.62%. Nordox fungicide showed the highest inhibition in vitro, with 95.99% inhibition of the pathogen. In the test of the effect of medicinal plant essential oils, the highest inhibition amount of 96.22% was seen for the essential oil of Trachyspermum with a concentration of 1000 mg/L. In cold storage conditions (5 °C), without wounding and wound formation, the highest inhibition of pathogenic fungal growth was achieved with 93.5% and 85%, respectively, by the combined treatment of Trichoderma and potassium phosphide. At a temperature of 20 °C, this compound showed the highest inhibition of B. cinerea A91 mycelium growth. This study showed that essential oils of medicinal plants and the combined application of Trichoderma and chemical fungicides could be the best way to control gray mold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abbasi KA, Ebadi A, Fattahi MM, Shokrpour M (2020) Effect of salicylic acid on reduction of spring cold damage on some cultivars of Vitis vinifera and Vitis riparia. J Hortic Sci 34(3):361–376

    Google Scholar 

  • Ahmed S, Roberto SR, Domingues AR, Shahab M, Junior OJC, Sumida CH, De Souza RT (2018) Effects of different sulfur dioxide pads on Botrytis mold in ‘Italia’table grapes under cold storage. Horticulturae 4(4):29

    CAS  Google Scholar 

  • Asghari Marjanlo A, Mostofi Y, Heydari M, Javan Nik Khah M, Shoeibi S (2011) Antifungal effects of four plant essential oils on Botrytis cinerea in laboratory conditions. J Med Plants 10(39):14–24

    Google Scholar 

  • Bello F, Montironi ID, Medina MB, Munitz MS, Ferreira FV, Williman C, Musumeci MA (2022) Mycofumigation of postharvest blueberries with volatile compounds from Trichoderma atroviride IC-11 is a promising tool to control rots caused by Botrytis cinerea. Food Microbiol 106:104040

    CAS  PubMed  Google Scholar 

  • Bogumił A, Paszt LS, Lisek A, Trzciński P, Harbuzov A (2013) Identification of new Trichoderma strains with antagonistic activity against Botrytis cinerea. Folia Hortic 25(2):123–132

    Google Scholar 

  • Brouwer M, Huss A, van der Mark M, Nijssen PC, Mulleners WM, Sas AM, Vermeulen RC (2017) Environmental exposure to pesticides and the risk of Parkinson’s disease in the Netherlands. Environ Int 107:100–110

    CAS  PubMed  Google Scholar 

  • Capozzi V, Fiocco D, Amodio ML, Gallone A, Spano G (2009) Bacterial stressors in minimally processed food. IJMS 10(7):3076–3105

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carles C, Bouvier G, Lebailly P, Baldi I (2017) Use of job-exposure matrices to estimate occupational exposure to pesticides: a review. J Expo Sci Environ Epidemiol 27(2):125–140

    CAS  PubMed  Google Scholar 

  • Dean R, Van Kan JA, Pretorius ZA, Hammond-Kosack KE, Di Pietro A, Spanu PD, Foster GD (2012) The top 10 fungal pathogens in molecular plant pathology. Mol Plant Pathol 13(4):414–430

    PubMed  PubMed Central  Google Scholar 

  • Dennis C, Webster J (1971) Antagonistic properties of species-groups of Trichoderma: I. Production of non-volatile antibiotics. Trans Br Mycol Soc 57(1):363–369

    Google Scholar 

  • Dugassa A, Alemu T, Woldehawariat Y (2021) In-vitro compatibility assay of indigenous Trichoderma and Pseudomonas species and their antagonistic activities against black root rot disease (Fusarium solani) of faba bean (Vicia faba L.). BMC Microbiol 21(1):1–11

    Google Scholar 

  • Erdinc BAL, Demir KOK, Torcuk AI (2017) Postharvest putrescine and ultrasound treatments to improve quality and postharvest life of table grapes (Vitis vinifera L.) cv. Michele Palieri. J Cent Eur Agric 18(3):598–615

    Google Scholar 

  • Etebarian HR, Sholberg PL, Eastwell KC, Sayler RJ (2005) Biological control of apple blue mold with Pseudomonas fluorescens. Can J Microbiol 51(7):591–598

    CAS  PubMed  Google Scholar 

  • Ezziyyani M, Sánchez CP, Ahmed AS, Requena ME, Castillo M (2004) Trichoderma harzianum as a biofungicide for the biocontrol of Phytophthora capsici in pepper plants (Capsicum annuum L.). Anal Biol 26:35–45

    Google Scholar 

  • FAO (2020) Food and Agriculture Organization of the United Nations-Statistic Division

  • Fiddaman PJ, Rossall S (1993) The production of antifungal volatiles by Bacillus subtilis. J Appl Bacteriol 74(2):119–126

    CAS  PubMed  Google Scholar 

  • Freitas PM, López-Gálvez F, Tudela JA, Gil MI, Allende A (2015) Postharvest treatment of table grapes with ultraviolet‑C and chitosan coating preserves quality and increases stilbene content. Postharvest Biol Technol 105:51–57

    CAS  Google Scholar 

  • Galarza L, Akagi Y, Takao K, Kim CS, Maekawa N, Itai A, Kodama M (2015) Characterization of Trichoderma species isolated in Ecuador and their antagonistic activities against phytopathogenic fungi from Ecuador and Japan. J Gen Plant Pathol 81(3):201–210

    Google Scholar 

  • Gharaei M, Jamali S, Abbasi S (2018) Effects of biocontrol activity of ascomycetes yeasts isolated from natural resources on gray mold fungus (Botrytis cinerea) using dual culture method. Biol Control Pests Plant Dis 7(1):1–7

    Google Scholar 

  • Gong S, Hao J, Xia Y, Liu X, Li J (2009) Inhibitory effect of bionic fungicide 2‑allylphenol on Botrytis cinerea (Pers. ex Fr.) in vitro. Pest Manag Sci 65(12):1337–1343

    CAS  PubMed  Google Scholar 

  • Hakimi Y, Fatahi R, Shokrpour M, Naghavi MR (2022) Investigation of germination characteristics of four medicinal plants seed (lavender, hyssop, black cumin and Scrophularia) under interaction between salinity stress and temperature levels. J Genet Resour 8(1):35–45. https://doi.org/10.22080/JGR.2021.21801.1262

    Article  Google Scholar 

  • Huang W, He Y, Xiao J, Huang Y, Li A, He M, Wu K (2019) Risk of breast cancer and adipose tissue concentrations of polychlorinated biphenyls and organochlorine pesticides: a hospital-based case-control study in Chinese women. Environ Sci Pollut Res 26(31):32128–32136

    CAS  Google Scholar 

  • Kasfi K, Taheri P, Jafarpour B, Tarighi S (2018) Identification of epiphytic yeasts and bacteria with potential for biocontrol of grey mold disease on table grapes caused by Botrytis cinerea. Span J Agric Res 16(1):23

    Google Scholar 

  • Kerssies A, Bosker-van Zessen AI, Wagemakers CAM, Van Kan JAL (1997) Variation in pathogenicity and DNA polymorphism among Botrytis cinerea isolates sampled inside and outside a glasshouse. Plant Dis 81(7):781–786

    CAS  PubMed  Google Scholar 

  • Kuzmanovska B, Rusevski R, Jankulovska M, Oreshkovikj KB (2018) Antagonistic activity of Trichoderma asperellum and Trichoderma harzianum against genetically diverse Botrytis cinerea isolates. Chil J Agric Res 78(3):391–399

    Google Scholar 

  • Langley RL (2011) Consequences of respiratory exposures in the farm environment. N C Med J 72(6):477–480

    PubMed  Google Scholar 

  • Lee JS, Kaplunov T, Zutahy Y, Daus A, Alkan N, Lichter A (2015) The significance of postharvest disinfection for prevention of internal decay of table grapes after storage. Sci Hortic 192:346–349

    CAS  Google Scholar 

  • Leyronas C, Duffaud M, Nicot PC (2012) Compared efficiency of the isolation methods for Botrytis cinerea. Mycology 3(4):221–225

    Google Scholar 

  • Liguori G, Sortino G, De Pasquale C, Inglese P (2015) Effects of modified atmosphere packaging on quality parameters of minimally processed table grapes during cold storage. Adv Hortic Sci 29:152–154

    Google Scholar 

  • Masih EI, Paul B (2002) Secretion of β‑1, 3‑glucanases by the yeast Pichia membranifaciens and its possible role in the biocontrol of Botrytis cinerea causing grey mold disease of the grapevine. Curr Microbiol 44(6):391–395

    CAS  PubMed  Google Scholar 

  • Peighami-Ashnaei S, Farzaneh M, Hadian J, Sharifi-Tehrani J, Ghorbanpoor M (2007) Evaluation of antifungal activity of some plant essential oils against the grey mold of apple caused by Botrytis cinerea. Agric Res 7(3):1–10

    Google Scholar 

  • Raveau R, Fontaine J, Lounès-Hadj Sahraoui A (2020) Essential oils as potential alternative biocontrol products against plant pathogens and weeds: a review. Foods 9(3):365

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rolim JM, Walker C, Mezzomo R, Muniz MF (2019) Antagonism and effect of volatile metabolites of Trichoderma spp. on Cladosporium spp. Floresta E Ambiente 26(2):e20170594

    Google Scholar 

  • Romanazzi G, Nigro F, Ippolito A (2008) Effectiveness of a short hyperbaric treatment to control postharvest decay of sweet cherries and table grapes. Postharvest Biol Technol 49(3):440–442

    CAS  Google Scholar 

  • Sabir FK, Sabir A (2013) Quality response of table grapes (Vitis vinifera L.) during cold storage to postharvest cap stem excision and hot water treatments. Int J Food Sci Technol 48(5):999–1006

    CAS  Google Scholar 

  • Samara R, Qubbaj T, Scott I, Mcdowell T (2021) Effect of plant essential oils on the growth of Botrytis cinerea Pers.: Fr., Penicillium italicum Wehmer, and P. digitatum (Pers.) Sacc., diseases. J Plant Prot Res 61(4):324–336

    CAS  Google Scholar 

  • Shao X, Cheng S, Wang H, Yu D, Mungai C (2013) The possible mechanism of antifungal action of tea tree oil on Botrytis cinerea. J Appl Microbiol 114(6):1642–1649

    CAS  PubMed  Google Scholar 

  • Soylu EM, Kurt Ş, Soylu S (2010) In vitro and in vivo antifungal activities of the essential oils of various plants against tomato grey mould disease agent Botrytis cinerea. Int J Food Microbiol 143(3):183–189

    CAS  PubMed  Google Scholar 

  • Suleiman SA, Gambo SM, Sunusi M (2019) An in vitro antagonistic effect of Trichoderma spp. against Fusarium oxysporum f. sp. lycopersici. Fudma J Sci 3(1):369–374

    Google Scholar 

  • Taghipour M, Shokrpour M, Hakimi Y (2022) Investigation of the physiological and biochemical responses of Echinacea purpurea under salinity stress. Biol Life Sci Forum 11(1):51

    Google Scholar 

  • Teles CS, Benedetti BC, Gubler WD, Crisosto CH (2014) Prestorage application of high carbon dioxide combined with controlled atmosphere storage as a dual approach to control Botrytis cinerea in organic ‘Flame Seedless’ and ‘Crimson Seedless’ table grapes. Postharvest Biol Technol 89:32–39

    CAS  Google Scholar 

  • Tian Y, Che Z, Sun D, He J, Liu S, Lin X (2019) In vitro effects of five different classes of fungicides on growth and development of Botrytis cinerea isolated from tree peony in China. HortScience 54(11):1984–1988

    CAS  Google Scholar 

  • Valková V, Ďúranová H, Galovičová L, Vukovic NL, Vukic M, Kačániová M (2021) In Vitro antimicrobial activity of lavender, mint, and rosemary essential oils and the effect of their vapours on growth of Penicillium spp. in a bread model system. Molecules 26(13):3859

    PubMed  PubMed Central  Google Scholar 

  • Vargas M, Garrido F, Zapata N, Tapia M (2012) Isolation and selection of epiphytic yeast for biocontrol of Botrytis cinerea Pers. on table grapes. Chil J Agric Res 72(3):332

    Google Scholar 

  • Velmurugan G, Ramprasath T, Swaminathan K, Mithieux G, Rajendhran J, Dhivakar M, Ramasamy S (2017) Gut microbial degradation of organophosphate insecticides-induces glucose intolerance via gluconeogenesis. Genome Biol 18(1):1–18

    Google Scholar 

  • Vitale A, Panebianco A, Polizzi G (2016) Baseline sensitivity and efficacy of fluopyram against Botrytis cinerea from table grape in Italy. Ann Appl Biol 169(1):36–45

    CAS  Google Scholar 

  • Wang Y, Liu X, Chen T, Xu Y, Tian S (2020) Antifungal effects of hinokitiol on development of Botrytis cinerea in vitro and in vivo. Postharvest Biol Technol 159:111038

    CAS  Google Scholar 

  • Xu D, Yu G, Xi P, Kong X, Wang Q, Gao L, Jiang Z (2018) Synergistic effects of resveratrol and pyrimethanil against Botrytis cinerea on grape. Molecules 23(6):1455

    PubMed  PubMed Central  Google Scholar 

  • Xu WT, Huang KL, Guo F, Qu W, Yang JJ, Liang ZH, Luo YB (2007) Postharvest grapefruit seed extract and chitosan treatments of table grapes to control Botrytis cinerea. Postharvest Biol Technol 46(1):86–94

    CAS  Google Scholar 

  • Yang Q, Wang J, Zhang P, Xie S, Yuan X, Hou X, Du Y (2020) In vitro and in vivo antifungal activity and preliminary mechanism of cembratrien-diols against Botrytis cinerea. Ind Crops Prod 154:112745

    CAS  Google Scholar 

  • Youssef K, Roberto SR (2014) Salt strategies to control Botrytis mold of ‘Benitaka’table grapes and to maintain fruit quality during storage. Postharvest Biol Technol 95:95–102

    CAS  Google Scholar 

  • Youssef K, Roberto SR, Chiarotti F, Koyama R, Hussain I, de Souza RT (2015) Control of Botrytis mold of the new seedless grape ‘BRS Vitoria’during cold storage. Sci Hortic 193:316–321

    CAS  Google Scholar 

  • Youssef K, Roberto S, Colombo R, Canteri M, Elsalam K (2019) Acibenzolar-S-methyl against Botrytis mold on table grapes in vitro and in vivo. Agron Sci Biotechnol 5(1):52–61

    Google Scholar 

  • Zhang X, Wu D, Duan Y, Ge C, Wang J, Zhou M, Chen C (2014) Biological characteristics and resistance analysis of the novel fungicide SYP-1620 against Botrytis cinerea. Pestic Biochem Physiol 114:72–78

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yousef Hakimi.

Ethics declarations

Conflict of interest

A. Rahmani and Y. Hakimi declare that they have no competing interests.

Rights and permissions

Springer Nature oder sein Lizenzgeber (z.B. eine Gesellschaft oder ein*e andere*r Vertragspartner*in) hält die ausschließlichen Nutzungsrechte an diesem Artikel kraft eines Verlagsvertrags mit dem/den Autor*in(nen) oder anderen Rechteinhaber*in(nen); die Selbstarchivierung der akzeptierten Manuskriptversion dieses Artikels durch Autor*in(nen) unterliegt ausschließlich den Bedingungen dieses Verlagsvertrags und dem geltenden Recht.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahmani, A., Hakimi, Y. Integrated Management of Grape Gray Mold Disease Agent Botrytis cinerea in Vitro and Post-harvest. Erwerbs-Obstbau 65, 1955–1964 (2023). https://doi.org/10.1007/s10341-022-00813-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10341-022-00813-4

Keywords

Navigation