, Volume 61, Issue 1, pp 71–78 | Cite as

Phytochemical Screening and Biological Activity of Extract Berries of Black Currant (Ribes nigrum L.)

  • Svetlana M. PaunovićEmail author
  • Mihailo Nikolić
  • Rade Miletić
  • Pavle Mašković
  • Mira Milinković
  • Žaklina Karaklajić-Stajić
Original Article


The objective of this study was to identify and quantify phenolic compounds, antioxidant and antimicrobial activity in extract of berries of seven black currant cultivars (‘Ben Lomond’, ‘Ben Sarek’, ‘Titania’, ‘Čačanska Crna’, ‘Tisel’, ‘Tiben’ and ‘Tsema’). High performance liquid chromatography-diode array detector (HPLC-DAD) technique was used to establish the profile of phenolic compounds. Antioxidant properties were evaluated using different methods, including total antioxidant capacity, DPPH and hydroxyl radicals scavenging activities, as well as inhibition of lipid peroxidation. The highest amounts of phenolics (15.0 mg GAE/g), flavonoids (5.25 mg RU/g) and antioxidant capacity (12.4 mg AA/g) were found in the cultivar ‘Čačanska Crna’, whereas the other cultivars exhibited variability in the studied parameters. The fruits of black currant contained high concentrations of flavonols and phenolic acids. The main phenolic compounds were quercetin and caffeic acid. All explored extracts exhibited strong scavenging activity against DPPH radicals, which ranges from 56.19 μg/mL (‘Titania’) to 61.17 μg/mL (‘Tisel’). The antimicrobial activity was tested using broth dilution procedure for determination of the minimum inhibitory concentration (MIC). The MICs were determined for 8 selected strains. All extracts showed strong antimicrobial activity, in the range between 50.65 μg/mL and 166.38 μg/mL. Black currant fruit extract, rich in phenolic compounds and with strong antioxidant activity can be used as natural antioxidant in food and pharmaceutical industries.


Black currant Phenolic compounds Antioxidant activity Antimicrobial activity 

Phytochemisches Screening und biologische Aktivität in Fruchtextrakten von Schwarzen Johannisbeeren (Ribes nigrum L.)


Schwarze Johannisbeere Phenolische Verbindungen Antioxidative Aktivität Antimikrobielle Aktivität 



This study is part of Project Ref. No. 31093 financially supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia.

Conflict of interest

S.M. Paunović, M. Nikolić, Rade Miletić, P. Mašković, M. Milinković and Ž. Karaklajić-Stajić declare that they have no competing interests.


  1. Anttonen MJ, Karjalainen RJ (2006) High-performance liquid chromatography analyses of black currant (Ribes nigrum L.) fruit phenolics grown either conventionally or organically. J Agric Food Chem 54, 20:7530–7538. CrossRefGoogle Scholar
  2. Benvenuti S, Pellati F, Melegari MA, Bertelli D (2004) Polyphenols, anthocyanins, ascorbic acid, and radical scavenging activity of Rubus, Ribes, and Aronia. J Food Sci 69, 3:164–169. CrossRefGoogle Scholar
  3. Cavanagh HMA, Hipwell M, Wilkinson JM (2003) Antibacterial activity of berry fruits used for culinary purposes. J Med Food 6, 1:57–61. CrossRefGoogle Scholar
  4. Chirumbolo S (2010) The role of quercetin, flavonols and flavones in modulating inflammatory cell function. Inflamm Allergy Drug Targets 9, 4:263–285. CrossRefGoogle Scholar
  5. Häkkinen S, Heinonen M, Kärenlampi S, Mykkänen H, Ruuskanen J, Törroönen R (1999) Screening of selected Flavonoids and phenolic acids in 19 berries. Food Res Intern 32, 5:345–353. CrossRefGoogle Scholar
  6. Hakkinen SH, Karenlampi SO, Heinonen M, Mykkanen HM, Torronen AR (1998) HPLC method for screening of flavonoids and phenolics in berries. J Agric Food Chem 77, 4:543–551.<543::AID-JSFA78>3.0.CO;2-I CrossRefGoogle Scholar
  7. Han CH, Ding H, Casto B, Stoner G, D’Ambrosio S (2005) Inhibition of the growth of premalignant and malignant human oral cell lines by extracts and components of black raspberry. Nutr Cancer 51, 2:207–217. CrossRefGoogle Scholar
  8. Hinneburg I, Dorman HJD, Hiltunen R (2006) Antioxidant activities of extracts from selected culinary herbs and spices. Food Chem 97, 1:122–129. CrossRefGoogle Scholar
  9. Hsu CK, Chiang BH, Chen YS, Yang JH, Liu CL (2008) Improving the antioxidant activity of buckwheat (Fagopyrum tataricm Gaertn) sprout with trace element water. Food Chem 108, 2:633–641. CrossRefGoogle Scholar
  10. Huang NE, Wu Z, Long SR, Arnold KC, Chen X, Blank K (2009) On instantaneous frequency. Adv Adapt Data Anal 1, 2:177–229. CrossRefGoogle Scholar
  11. Hummer KE, Dale A (2010) Horticulture of Ribes. For Pathol 40, 3-4:251–263. CrossRefGoogle Scholar
  12. Jakobek L, Šeruga M, Novak L, Medvidović-Kosanović M (2007) Flavonols, phenolic acids and antioxidant activity of some red fruit. Dtsch Lebensmitt-Rundsch 369–378. Scholar
  13. Kähkönen MP, Hopia AI, Vuorela HJ, Rauha JP, Pihlaja K, Kujala TS, Heinonen M (1999) Antioxidant activity of plant extracts containing phenolic compounds. J Agric Food Chem 47, 10:3954–3962. Scholar
  14. Kähkönen MP, Hopia AI, Heinonen M (2001) Berry phenolics and their antioxidative activity. J Agric Food Chem 49, 8:4076–4082. CrossRefGoogle Scholar
  15. Karjalainen K, Kemppainen K, Van Raaij E (2009) Non compliant work Behaviour in purchasing: an exploration of reasons behind maverick buying. J Busin Ethics 84:245–261. CrossRefGoogle Scholar
  16. Konczak I, Zhang W (2004) Anthocyanins—more than nature’s colours. J Biomed Biotechnol 5:239–240. CrossRefGoogle Scholar
  17. Kumarasamy Y, Byres M, Cox PJ, Jaspars M, Nahar L, Sarker SD (2007) Screening seeds of some Scottish plants for free radical scavenging activity. Phytother Res 21, 7:615–621. CrossRefGoogle Scholar
  18. Maatta-Riihinen KR, Kamal-Eldin A, Mattila PH, Gonzdlez-Paramas AM, Torronen AR (2004) Distribution and content of phenolic compounds in eighteen scandinavian berry species. J Agric Food Chem 52, 14: 4477–4486. CrossRefGoogle Scholar
  19. Markham KR (1989) Flavones, flavonoids, and their glycosides. In: Harborne JB, Dey PM (eds) Plant phenolics. Methods in plantbiochemistry, vol 1. Academic Press, London, pp 197–235CrossRefGoogle Scholar
  20. Mättää KR, Kamal-Eldin A, Törrönen AR (2003) High-performance liquid chromatography (HPLC) analysis of phenolic compounds in berries with diode array and electrospray ionization mass spectrometric (MS) detection: Ribes species. J Agric Food Chem 51, 23:6736–6744. CrossRefGoogle Scholar
  21. Mattila ML, Kielinen M, Linna SL, Jussila K, Ebeling H, Bloigu R, Joseph RM, Moilanen I (2011) Autism spectrum disorders according to DSM-IV-TR and comparison with DSM-5 draft criteria: an epidemiological study. J Am Acad Child Adolesc Psychiatry 50, 6:583–592. CrossRefGoogle Scholar
  22. Mazza G (2007) Anthocyanins and heart health. Ann Ist Super Sanita 43, 4:369–374. Scholar
  23. Mikkonen TP, Maatta KR, Hukkanen AT, Kokko HI, Torronen AR, Karenlampi SO, Karjalainen RO (2001) Flavonol content varies among black currant cultivar. J Agric Food Chem 49, 7:3274–3277. Scholar
  24. Mišan AC, Mimica-Dukic NM, Mandic AI, Sakac MB, Milovanovic IL, Sedej IJ (2011) Development of a rapid resolution HPLC method for the separation and determination of 17 phenolic compounds in crude plant extracts. Cent Eur J Chem 9, 1:133–142. Google Scholar
  25. Mosel HD, Herrmann K (1974) Phenolics of fruits IV. The phenolics of blackberries and raspberries and their changes during development and ripeness of the fruits. Z Lebensmitt Unters Forsch 154:324–327CrossRefGoogle Scholar
  26. Moyer AR, Hummer EK, Finn EC, Frei B, Wrolstad ER (2002) Anthocyanins, phenolics and antioxidant capacity in diverse small fruits: Vaccinium, Rubus and Ribes. J Agric Food Chem 50, 3:519–525. CrossRefGoogle Scholar
  27. Oszmiański J, Wojdylo A, Gorzelany J, Kapusta I (2011) Identification and characterization of low-molecular-weight polyphenols in berry leaf extracts by HPLC-DAD and LC-ESI/MS. J Agric Food Chem 59, 24:12830–12835. CrossRefGoogle Scholar
  28. Prieto P, Pineda M, Aguilar M (1999) Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphor molybdenum complex: Specific application to the determination of vitamin E. Anal Biochem 269, 2:337–341. CrossRefGoogle Scholar
  29. Puupponen-Pimiä R, Nohynek L, Alakomi HL, Oksman-Caldentey KM (2005) Bioactive berry compounds—novel tools against human pathogens (mini-review). Appl Microbiol Biotechnol 67, 1:8–18. CrossRefGoogle Scholar
  30. Raudsepp P, Kaldmae H, Kikas A, Libek AV, Pussa T (2010) Nutritional quality of berries and bioactive compounds in the leaves of black currants (Ribes nigrum L.) cultivars evaluated in Estonia. J Berry Res 1:53–59Google Scholar
  31. Rauha JP, Remes S, Heinonen M, Hopia A, Kähkönen M, Kujala T, Pihlaja K, Vuorela H, Vuorela P (2000) Antimicrobial effects of Finnish plant extracts containing flavonoids and other phenolic compounds. Int J Food Microbiol 56, 1:3–12. CrossRefGoogle Scholar
  32. Rubinskiene M, Viskelis P, Jasutiene I, Duchovskis P, Bobinas C (2006) Changes in biologically active constituents during ripening in black currants. J Fruit Ornam Plant Res 14, 2:236–246. Google Scholar
  33. Saha MR, Hasan SMR, Akter R, Hossain MM, Alam MS, Alam MA, Mazumder MEH (2008) In vitro free radical scavenging activity of methanol extract of the leaves of Mimusops elengi Linn. Bangladesh J Vet Med 6, 2:197–202. CrossRefGoogle Scholar
  34. Satyajit DS, Lutfun N, Yashodharan K (2007) Microtitre plate-based antibacterial assay incorporating resazurin as an indicator of cell growth, and its application in the in vitro antibacterial screening of phytochemicals. Methods 42, 4:321–324. CrossRefGoogle Scholar
  35. Seeram NP, Adams LS, Zhang Y, Lee R, Sand D, Scheuller HS, Heber D (2006) Blackberry, black raspberry, blueberry, cranberry, red raspberry and strawberry extracts inhibit growth and simulate apoptosis of human cancer cells in vitro. J Agric Food Chem 54, 25:9329–9339. CrossRefGoogle Scholar
  36. Singleton V, Orthofer R, Lamuela-Raventos RM (1999) Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin–Ciocalteu reagent. Methods Enzym 299:152–175CrossRefGoogle Scholar
  37. Stöhr H, Herrmann K (1975) The phenolics of fruits. The phenolics of strawberries and their changes during development and ripeness of the fruits. Z Lebensmitt Unters Forsch 159:341–348CrossRefGoogle Scholar
  38. Tabart J, Kevers C, Pincemail J, Defraigne JO, Dommes J (2006) Antioxidant capacity of black currant varies with organ, season and cultivar. J Agric Food Chem 54, 17:6271–6276. CrossRefGoogle Scholar
  39. Tabart J, Franck T, Kevers C, Pincemail J, Serteyn D, Defraigne JO, Dommes J (2012) Antioxidant and anti-inflammatory activities of Ribes nigrum extracts. Food Chem 131, 4:1116–1122. CrossRefGoogle Scholar
  40. Takao T, Watanabe N, Yagi I, Sakata K (1994) A simple screening method for antioxidants and isolation of several antioxidants produced by marine bacteria from fish and shellfish. Biosci Biotechnol Biochem 58, 10:1780–1783. CrossRefGoogle Scholar
  41. Taruscio TG, Barney DL, Exon J (2004) Content and profile of flavanoid and phenolic acid compounds in conjunction with the antioxidant capacity for a variety of Northwest Vaccinium berries. J Agric Food Chem 52, 10:3169–3176. CrossRefGoogle Scholar
  42. Verrmeris W, Nicholson R (2006) Phenolic compound biochemistry. Springer, Netherlands. Google Scholar
  43. Wichtl M, Anton R (1999) Plantes thérapeutiques: tradition, pratique officinale, science et thérapeutique. In: Ed. Tec. & Doc, Paris,
  44. Wu X, Gu L, Prior RL, McKay S (2004) Characterization of anthocyanins and proanthocyanidins in some cultivars of Ribes, Aronia, and Sambucus and their antioxidant capacity. J Agric Food Chem 52, 26:7846–7856. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2018

Authors and Affiliations

  • Svetlana M. Paunović
    • 1
    Email author
  • Mihailo Nikolić
    • 2
  • Rade Miletić
    • 1
  • Pavle Mašković
    • 3
  • Mira Milinković
    • 1
  • Žaklina Karaklajić-Stajić
    • 1
  1. 1.Department of Fruit Growing TechnologyFruit Research Institute ČačakČačakSerbia
  2. 2.Faculty of Agriculture, Department of Fruit ScienceUniversity of BelgradeBelgradeSerbia
  3. 3.Faculty of Agronomy, Department of Chemistry and Chemical EngineeringUniversity of KragujevacČačakSerbia

Personalised recommendations