Skip to main content

Subterranean termite colony elimination can be achieved even when only a small proportion of foragers feed upon a CSI bait

Abstract

Termite bait products that contain chitin synthesis inhibitors (CSIs) protect structures from subterranean termites via colony elimination. A hallmark of CSI baits is their dose-independent lethal time, as workers exposed to a CSI do not die until they initiate the molting process. Due to this mode of action and termite behaviors such as trophallaxis and cannibalism, a relatively small quantity of ingested CSI can spread throughout an entire colony before secondary repellency or avoidance behaviors occur, ultimately resulting in total colony elimination. In the field, only a portion of a subterranean termite colony actively forages upon a CSI bait at any given time, suggesting that only a relatively small proportion of workers may need to feed upon a CSI bait for a colony to be eliminated. In the present study, we used varying proportions of workers from whole four-year-old laboratory-reared Coptotermes gestroi (Wasmann) colonies (~ 62,500 termites/colony on average) to determine what proportion of workers need to feed upon a CSI bait in order to achieve colony elimination. A range of 0% (control), 0.5%, 1%, 2.5%, and 5% of the total worker population of colonies was allowed to feed on a formulated 0.5% noviflumuron bait for five days before being returned to their colonies. Colony elimination was observed for all 5%-fed and four out of six 2.5%-fed colonies by 107 days after CSI exposure. Our results confirm that only a small subset of the worker population of a colony must feed upon a CSI bait to achieve subterranean termite colony elimination.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Availability of data and material

Data are provided in supplementary materials.

References

  1. Bourguignon T, Lo N, Šobotník J, Sillam-Dussès D, Roisin Y, Evan TA (2016) Oceanic dispersal, vicariance and human introduction shaped the modern distribution of the termites Reticulitermes, Heterotermes and Coptotermes. Proc Royal Soc B 283:20160179. https://doi.org/10.1098/rspb.2016.0179

    CAS  Article  Google Scholar 

  2. Campora C, Grace J (2001) Tunnel orientation and search pattern sequence of the Formosan subterranean termite (Isoptera: Rhinotermitidae). J Econ Entomol 94:1193–1199. https://doi.org/10.1603/0022-0493-94.5.1193

    CAS  Article  PubMed  Google Scholar 

  3. Chouvenc T (2018) Comparative impact of chitin synthesis inhibitor baits and non-repellent liquid termiticides on subterranean termite colonies over foraging distances: colony elimination versus localized termite exclusion. J Econ Entomol 111:2317–2328. https://doi.org/10.1093/jee/toy210

    Article  PubMed  Google Scholar 

  4. Chouvenc T (2021) Subterranean Termite [Coptotermes gestroi (Blattodea: Rhinotermitidae)] Colony elimination through exposure to a novaluron CSI bait formulation in laboratory. J Econ Entomol. https://doi.org/10.1093/jee/toab061

    Article  PubMed  Google Scholar 

  5. Chouvenc T, Su N-Y (2014) Colony age-dependent pathway in caste development of Coptotermes formosanus Shiraki. Insectes Soc 61:171–182. https://doi.org/10.1007/s00040-014-0343-9

    Article  Google Scholar 

  6. Chouvenc T, Su N-Y (2017) Subterranean termites feeding on CSI baits for a short duration still results in colony elimination. J Econ Entomol 110:2534–2538. https://doi.org/10.1093/jee/tox282

    Article  PubMed  Google Scholar 

  7. Chouvenc T, Helmick EE, Su N-Y (2015) Hybridization of two major termite invaders as a consequence of human activity. PLoS ONE 10:e0120745. https://doi.org/10.1371/journal.pone.0120745

  8. Chouvenc T, Scheffrahn RH, Su N-Y (2016) Establishment and spread of two invasive subterranean termite species (Coptotermes formosanus and C. gestroi; Isoptera: Rhinotermitidae) in metropolitan southeastern Florida (1990–2015). Fla Entomol 99:187–191. https://doi.org/10.1653/024.099.0205

    Article  Google Scholar 

  9. Du H, Chouvenc T, Su N-Y (2017) Development of age polyethism with colony maturity in Coptotermes formosanus (Isoptera: Rhinotermitidae). Environ Entomol 46:311–318. https://doi.org/10.1093/ee/nvw162

    Article  PubMed  Google Scholar 

  10. Eger JE Jr, Lees MD, Neese PA, Atkinson TH, Thoms EM, Messenger MT, Denmark JJ, Lee L-C, Vargo EL, Tolley MP (2012) Elimination of subterranean termite (Isoptera: Rhinotermitidae) colonies using a refined cellulose bait matrix containing noviflumuron when monitored and replenished quarterly. J Econ Entomol 105:533–539. https://doi.org/10.1603/EC11027

    Article  PubMed  Google Scholar 

  11. Evans TA, Iqbal N (2015) Termite (order Blattodea, infraorder Isoptera) baiting 20 years after commercial release. Pest Manag Sci 71:897–906. https://doi.org/10.1002/ps.3913

    CAS  Article  PubMed  Google Scholar 

  12. Evans TA, Forschler BT, Grace JK (2013) Biology of invasive termites: a worldwide review. Annu Rev Entomol 58:455–474. https://doi.org/10.1146/annurev-ento-120811153554

    CAS  Article  PubMed  Google Scholar 

  13. Gautam BK, Henderson G (2014) Comparative evaluation of three chitin synthesis inhibitor termite baits using multiple bioassay designs. Sociobiology 61:82–87. https://doi.org/10.13102/sociobiology.v61i1.82-87

    Article  Google Scholar 

  14. Getty GM, Haverty MI, Copren KA et al (2000) Response of Reticulitermes spp. (Isoptera: Rhinotermitidae) in northern California to baiting with hexaflumuron with sentricon termite colony elimination system. J Econ Entomol 93:1498–1507. https://doi.org/10.1603/0022-0493-93.5.1498

    CAS  Article  PubMed  Google Scholar 

  15. Grace JK, Su N-Y (2001) Evidence supporting the use of termite baiting systems for long-term structural protection (Isoptera) Sociobiology 37:301–310

  16. Grace JK, Tome CH, Shelton TG, Oshiro RJ, Yates JR (1996) Baiting studies and consideration with Coptotermes formosanus (Isoptera: Rhinotermitidae) in Hawaii. Sociobiology 28:511–520

    Google Scholar 

  17. Grace JK, Aihara-Sasaki M, Yates JR (2004) Differences in tunneling behavior of Coptotermes vastator and Coptotermes formosanus (Isoptera: Rhinotermitidae) Sociobiology 43:153–158

  18. Hapukotuwa NK, Grace JK (2012) Coptotermes formosanus and Coptotermes gestroi (Blattodea: Rhinotermitidae) exhibit quantitatively different tunneling patterns. Psyche 2012:675356. https://doi.org/10.1155/2012/675356

    Article  Google Scholar 

  19. Hapukotuwa NK, Grace JK (2014) Do tunnel patterns of Coptotermes formosanus and Coptotermes gestroi (Blattodea: Rhinotermitidae) reflect different foraging strategies? Sociobiology 59:189–202. https://doi.org/10.13102/sociobiology.v59i1.676

    Article  Google Scholar 

  20. Kakkar G (2016). Temporal and spatial assessment of molting in workers of Coptotermes formosanus Shiraki: an approach to speed up the colony elimination with the use of chitin synthesis inhibitor baits. Ph.D. dissertation, University of Florida, Gainesville, FL

  21. Kakkar G, Osbrink W, Su N-Y (2018) Molting site fidelity accounts for colony elimination of the Formosan subterranean termites (Isoptera: Rhinotermitidae) by chitin synthesis inhibitor baits. Sci Rep 8:1–9. https://doi.org/10.1038/s41598-018-19603-8

  22. Kassambara, A, Kassambara MA (2020) ggpubr: 'ggplot2' based publication ready plots. R package version 0.4.0

  23. King EG Jr, Spink WT (1969) Foraging galleries of the Formosan subterranean termite, Coptotermes formosanus, in Louisiana. Ann Entomol Soc Am 62:536–542. https://doi.org/10.1093/aesa/62.3.536

    Article  Google Scholar 

  24. Krishna K, Grimaldi DA, Krishna V et al (2013) Treatise on the Isoptera of the world: Termitidae (part one). Bull Am Mus Nat Hist 2013:973–1495. http://www.hdl.handle.net/2246/6430

    Article  Google Scholar 

  25. Kubota S, Shono Y, Matsunaga T et al (2006) Laboratory evaluation of bistrifluron, a benzoylphenylurea compound, as a bait toxicant against Coptotermes formosanus (Isoptera: Rhinotermitidae) J Econ Entomol 99:1363–1368. https://doi.org/10.1093/jee/99.4.1363

  26. Lee S-H, Lee S-B (2020) Exploring the effect of the installation position of bait station on bait spreading in termite colonies: simulation study. Ecol Inform 56:101056. https://doi.org/10.1016/j.ecoinf.2020.101056

    Article  Google Scholar 

  27. Lewis JL (2008) Transfer efficiency by the subterranean termite Reticulitermes flavipes (Isoptera: Rhinotermitidae) of food borne bait formulations containing benzoylphenyl urea chitin synthesis inhibitor. Ph.D. dissertation, University of Georgia, Athens, GA

  28. Lewis JL, Forschler BT (2017) Transfer of five commercial termite bait formulations containing benzoylphenyl urea chitin synthesis inhibitors within groups of the subterranean termite Reticulitermes flavipes (Blattodea: Rhinotermitidae). Int J Pest Manag 63:224–233. https://doi.org/10.1080/09670874.2016.1241911

    CAS  Article  Google Scholar 

  29. Messenger MT, Su N-Y, Husseneder C et al (2005) Elimination and reinvasion studies with Coptotermes formosanus (Isoptera: Rhinotermitidae) in Louisiana. J Econ Entomol 98:916–929. https://doi.org/10.1603/0022-0493-98.3.916

    Article  PubMed  Google Scholar 

  30. Osbrink WL, Cornelius ML, Lax AR (2011) Areawide field study on effect of three chitin synthesis inhibitor baits on populations of Coptotermes formosanus and Reticulitermes flavipes (Isoptera: Rhinotermitidae). J Econ Entomol 104:1009–1017. https://doi.org/10.1603/ec10217

    CAS  Article  PubMed  Google Scholar 

  31. Patel JS, Lee S-B, Chouvenc T et al (2020) Inferring termite colony size using wood consumption in subterranean termites (Blattodea: Rhinotermitidae) in laboratory-rearing conditions. J Econ Entomol 113:905–910. https://doi.org/10.1093/jee/toz353

    Article  PubMed  Google Scholar 

  32. Peters BC, Fitzgerald CJ (2003) Field evaluation of the bait toxicant chlorfluazuron in eliminating Coptotermes acinaciformis (Froggatt)(Isoptera: Rhinotermitidae). J Econ Entomol 96:1828–1831. https://doi.org/10.1093/jee/96.6.1828

    CAS  Article  PubMed  Google Scholar 

  33. Puche H, Su N-Y (2001) Application of fractal analysis for tunnel systems of subterranean termites (Isoptera: Rhinotermitidae) under laboratory conditions. Environ Entomol 30:545–549. https://doi.org/10.1603/0046-225X-30.3.545

    Article  Google Scholar 

  34. Rust MK, Su N-Y (2012) Managing social insects of urban importance. Ann Rev Entomol 57:355–375. https://doi.org/10.1146/annurev-ento-120710-100634

    CAS  Article  Google Scholar 

  35. Saran RK, Rust MK (2007) Household and structural insects: toxicity, uptake, and transfer efficiency of fipronil in western subterranean termite (Isoptera: Rhinotermitidae. J Econ Entomol 100:495. https://doi.org/10.1093/jee/100.2.495

    Article  PubMed  Google Scholar 

  36. Su N-Y (1994) Field evaluation of a hexaflumuron bait for population suppression of subterranean termites (Isoptera: Rhinotermitidae). J Econ Entomol 87:389–397. https://doi.org/10.1093/jee/87.2.389

    Article  Google Scholar 

  37. Su N-Y (2002) Novel technologies for subterranean termite control. Sociobiology 40:95–102

    Google Scholar 

  38. Su N-Y (2003) Baits as a tool for population control of the Formosan subterranean termite. Sociobiology 41:177–192

    Google Scholar 

  39. Su N-Y (2005) Response of the formosan subterranean termites (Isoptera: Rhinotermitidae) to baits or nonrepellent termiticides in extended foraging arenas. J Econ Entomol 98:2143–2152. https://doi.org/10.1093/jee/98.6.2143

    CAS  Article  PubMed  Google Scholar 

  40. Su N-Y (2011) Technological needs for sustainable termite management. Sociobiology 58:229–239

    Google Scholar 

  41. Su N-Y (2013) How to become a successful invader. Fla Entomol 96:765–769. https://doi.org/10.1653/024.096.0309

    Article  Google Scholar 

  42. Su N-Y (2019) Development of baits for population management of subterranean termites. Ann Rev Entomol 64:115–130. https://doi.org/10.1146/annurev-ento-011118-112429

    CAS  Article  Google Scholar 

  43. Sukartana P, Sumarni G, Broadbent S (2009) Evaluation of chlorfluazuron in controlling the subterranean termite Coptotermes curvignathus (Isoptera: Rhinotermitidae) in Indonesia. J Trop for Sci 21:13–18

    Google Scholar 

  44. Su N-Y, Lees M (2009) Biological activities of a bait toxicant for population management of subterranean termites. In: Pesticides in household, structural and residential pest management. Am Chem Soc Symp Ser, pp 87–96. https://doi.org/10.1021/bk-2009-1015.ch007

  45. Su N-Y, Scheffrahn RH (1988) Foraging population and territory of the Formosan subterranean termite(Isoptera: Rhinotermitidae) in an urban environment. Sociobiology 14:353–360

    Google Scholar 

  46. Su N-Y, Scheffrahn RH (1993) Laboratory evaluation of two chitin synthesis inhibitors, hexaflumuron and diflubenzuron, as bait toxicants against Formosan and eastern subterranean termites (Isoptera: Rhinotermitidae). J Econ Entomol 86:1453–1457. https://doi.org/10.1093/jee/86.5.1453

    CAS  Article  Google Scholar 

  47. Su N, Scheffrahn R (1996) Fate of subterranean termite colonies (Isoptera) after bait applications—an update and review. Sociobiology 27:253–275

    Google Scholar 

  48. Su N-Y, Scheffrahn RH (1998) A review of subterranean termite control practices and prospects for integrated pest management programmes. Integrated Pest Manag Rev 3:1–13

    Article  Google Scholar 

  49. Su N-Y, Ban PM, Scheffrahn RH (1997a) Remedial baiting with hexaflumuron in above-ground stations to control structure-infesting populations of the formosan subterranean termite (Isoptera: Rhinotermitidae). J Econ Entomol 90:809–817. https://doi.org/10.1093/jee/90.3.809

    Article  Google Scholar 

  50. Su N-Y, Scheffrahn RH, Weissling T (1997b) A new introduction of a subterranean termite, Coptotermes havilandi Holmgren (Isoptera: Rhinotermitidae) in Miami, Florida. Fla Entomol 80:408

    Article  Google Scholar 

  51. Su N-Y, Ban PM, Scheffrahn RH (2000) Control of Coptotermes havilandi (Isoptera: Rhinotermitidae) with hexaflumuron baits and a sensor incorporated into a monitoring and baiting program. J Econ Entomol 93:415–421. https://doi.org/10.1603/0022-0493-93.2.415

    CAS  Article  PubMed  Google Scholar 

  52. Su N-Y, Ban PM, Scheffrahn R (2001) Control of subterranean termites (Isoptera: Rhinotermitidae) using commercial prototype aboveground stations and hexaflumuron baits. Sociobiology 37:111–120

    Google Scholar 

  53. Su N-Y, Osbrink W, Kakkar G et al (2017) Foraging distance and population size of juvenile colonies of the Formosan subterranean termite (Isoptera: Rhinotermitidae) in laboratory extended arenas. J Econ Entomol 110:1728–1735. https://doi.org/10.1093/jee/tox153

    Article  PubMed  Google Scholar 

  54. Tamashiro M, Fujii JK, Lai P-Y (1973) A simple method to observe, trap, and prepare large numbers of subterranean termites for laboratory and field experiments. Environ Entomol 2:721–722. https://doi.org/10.1093/ee/2.4.721

    Article  Google Scholar 

  55. Vahabzadeh RD, Gold RE, Austin JW (2007) Effects of four chitin synthesis inhibitors on feeding and mortality of the eastern subterranean termite, Reticulitermes flavipes (Isoptera: Rhinotermitidae). Sociobiology 50:833–860

    Google Scholar 

  56. R Development Core Team (2020) A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL: https://www.R-project.org/, 4.05 edn

  57. Weesner FM (1969) External anatomy, vol 1. Academic Press, New York, New York

    Google Scholar 

  58. Xing L, Chouvenc T, Su N-Y (2014) Behavioral and histological changes in the Formosan subterranean termite (Isoptera: Rhinotermitidae) induced by the chitin synthesis inhibitor noviflumuron. J Econ Entomol 107:741–747. https://doi.org/10.1603/ec13254

    Article  PubMed  Google Scholar 

  59. Yang R-L, Su N-Y, Bardunias P (2009) Individual task load in tunnel excavation by the Formosan subterranean termite (Isoptera: Rhinotermitidae). Ann Entomol Soc Am 102:906–910. https://doi.org/10.1603/008.102.0517

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge Reynaldo Moscat, Alvin Puzio, and Jean Palacios for helping to process colonies and Nan-Yao Su for providing laboratory space. This study was supported by the National Institute of Food and Agriculture (Grant No. 1014604) and Florida Department of Agriculture and Consumer Services (Grant No. 026398).

Funding

This study was partially funded by USDA-NIFA Hatch Project No. FLA-FTL-005660/No. 1014604 and by the Florida Department of Agriculture and Consumer Services under the Project No. 026398.

Author information

Affiliations

Authors

Contributions

TC conceived and designed research. JG and JV conducted experiments. All authors analyzed data. JG wrote the initial draft of the manuscript. All authors contributed to critical revision of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Johnalyn M. Gordon.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Antonio Biondi.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 22 kb)

Supplementary file2 (XLSX 17 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gordon, J.M., Velenovsky, J.F. & Chouvenc, T. Subterranean termite colony elimination can be achieved even when only a small proportion of foragers feed upon a CSI bait. J Pest Sci (2021). https://doi.org/10.1007/s10340-021-01446-4

Download citation

Keywords

  • Coptotermes gestroi
  • Bait transfer
  • Chitin synthesis inhibitors
  • Termite control