Skip to main content

Preventing invasions of Asian longhorn beetle and citrus longhorn beetle: are we on the right track?

Abstract

Two Asian longhorn beetles, Anoplophora glabripennis and Anoplophora chinensis, are among the most serious alien invasive species attacking forest and urban trees, both in North America and Europe. Major efforts have been put into preventing further entry and establishment of the two species as well as promoting their successful eradication. Here, we review these efforts, their progress and outcome, and scientific advancements in monitoring and control methods. The combined international activities and harmonizing legislative changes in detection and eradication methods have proven worthwhile, with more than 45% of eradication programmes successful in the last 12 years. Some countries were able to completely eradicate all populations and others managed to reduce the area affected. Although the costs of the eradication programmes can be very high, the benefits outweigh inaction. Attempts to eradicate A. chinensis have been more challenging in comparison with those targeting A. glabripennis. For both species, efforts are hampered by the ongoing arrival of new beetles, both from their native regions in Asia and from other invaded regions via bridgehead effects. The methods used for eradication have not changed much during the last decade, and host removal is still the method most commonly used. On the other hand, detection methods have diversified during the last decade with advances in semiochemical research and use of detection dogs. The next decade will determine if eradications continue to be successful, particularly in the case of A. chinensis, which has been targeted in some countries for containment instead of eradication.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Data availability

The datasets generated and analysed during the current study are available within the article and its supplementary materials.

References

  1. Adachi I (1990) Population studies of Anoplophora malasiaca adults (Coleoptera: Cerambycidae) in a citrus grove. Res Popul Ecol 32(1):15–32. https://doi.org/10.1007/BF02512587

    Article  Google Scholar 

  2. Akino T, Fukaya M, Yasui H et al (2001) Sexual dimorphism in cuticular hydrocarbons of the white-spotted longicorn beetle, Anoplophora malasiaca (Coleoptera: Cerambycidae). Entomol Sci 4:271–277

    Google Scholar 

  3. Akita K, Katô T, Yanagi T, Kubota K (2021) Reports of the alien species Anoplophora glabripennis (Motschulsky, 1853) (Coleoptera, Cerambycidae) found in Hyogo pref, Japan 月刊むし: a monthly journal of entomology (Japan) 601:41–5

  4. An Y, Baode W, Xiaojun Y et al (2004) Characterizing populations of Anoplophora glabripennis and related taxa with RAPD. Acta Entomol Sinica 47(2):229–235

    CAS  Google Scholar 

  5. ANSES (Agence nationale de sécurité sanitaire de l’alimentation, de l’environnement et du travail) (2019) Évaluation du risque simplifiée du foyer d’Anoplophora chinensis, capricorne des agrumes, à Royan. Avis de l’Anses. Rapports d’expertise collective, 66p

  6. Bancroft JS, Smith MT (2005) Dispersal and influences on movement for Anoplophora glabripennis calculated from individual mark-recapture. Entomol Exp Appl 116(2):83–92. https://doi.org/10.1111/j.1570-7458.2005.00320.x

    Article  Google Scholar 

  7. Boyd IL, Freer-Smith PH, Gilligan CA et al (2013) The consequence of tree pests and diseases for ecosystem services. Science. https://doi.org/10.1126/science.1235773

    Article  PubMed  Google Scholar 

  8. Brabbs T, Collins D, Hérard F et al (2015) Prospects for the use of biological control agents against Anoplophora in Europe. Pest Manag Sci 71(1):7–14. https://doi.org/10.1002/ps.3907

    CAS  Article  PubMed  Google Scholar 

  9. Brockerhoff EG, Liebhold AM (2017) Ecology of forest insect invasions. Biol Invasions 19(11):3141–3159. https://doi.org/10.1007/s10530-017-1514-1

    Article  Google Scholar 

  10. Brockerhoff EG, Kimberley M, Liebhold AM et al (2014) Predicting how altering propagule pressure changes establishment rates of biological invaders across species pools. Ecology 95(3):594–601. https://doi.org/10.1890/13-0465.1

    Article  PubMed  Google Scholar 

  11. CABI (2020). Invasive Species Compendium - Anoplophora chinensis. Wallingford, UK: CAB International. www.cabi.org/isc. Accessed 2 February 2020

  12. Carter ME, Smith MT, Harrison RG (2009a) Patterns of genetic variation among populations of the Asian longhorned beetle (Coleoptera: Cerambycidae) in China and Korea. Ann Entomol Soc Am 102(5):895–905. https://doi.org/10.1603/008.102.0516

    Article  Google Scholar 

  13. Carter ME, Smith MT, Turgeon JJ et al (2009b) Analysis of genetic diversity in an invasive population of Asian long-horned beetles in Ontario. Canada Can Entomol 141(6):582–594. https://doi.org/10.4039/n09-026

    Article  Google Scholar 

  14. Carter M, Smith M, Harrison R (2010) Genetic analyses of the Asian longhorned beetle (Coleoptera, Cerambycidae, Anoplophora glabripennis), in North America. Eur Asia Biol Invasions 12(5):1165–1182. https://doi.org/10.1007/s10530-009-9538-9

    Article  Google Scholar 

  15. Cavagna B, Ciampitti M, Bianchi A et al (2013) Lombardy region experience to support the prediction and detection strategies. J Entomol Acarol Res 45(1s):1–6

    Article  Google Scholar 

  16. Clifton EH, Jaronski ST, Hajek AE (2020a) Virulence of commercialized fungal entomopathogens against Asian longhorned beetle (Coleoptera: Cerambycidae). J Insect Sci 20(2):1–6. https://doi.org/10.1093/jisesa/ieaa006

    Article  PubMed  PubMed Central  Google Scholar 

  17. Clifton EH, Gardescu S, Behle RW et al (2020b) Optimizing application rates of Metarhizium brunneum (Hypocreales: Clavicipitaceae) microsclerotia for infecting the invasive Asian Longhorned Beetle (Coleoptera: Cerambycidae). J Econ Entomol 113(6):2650–2656. https://doi.org/10.1093/jee/toaa222

    Article  PubMed  Google Scholar 

  18. Cocquempot C, Carmignac D, Prost M (2003) Interceptions et introductions en France de Longicornes asiatiques: cas des Anoplophora glabripennis (Motschulsky) et chinensis (Forster)(Coleoptera Cerambycidae). Publications De La Société Linnéenne De Lyon 72(8):273–278. https://doi.org/10.3406/linly.2003.13483

    Article  Google Scholar 

  19. de la Vega GJ, Corley JC, Soliani C (2020) Genetic assessment of the invasion history of Drosophila suzukii in Argentina. J Pest Sci 93:63–75. https://doi.org/10.1007/s10340-019-01149-x

    Article  Google Scholar 

  20. Delvare G, Bon MC, Hérard F et al (2004) Description of Aprostocetus anoplophorae n sp (Hymenoptera: Eulophidae), a new egg parasitoid of the invasive pest Anoplophora chinensis (Förster)(Coleoptera: Cerambycidae). Ann Soc Entomol Fr 40(3–4):227–233. https://doi.org/10.1080/00379271.2004.10697421

    Article  Google Scholar 

  21. Desneux N, Decourtye A, Delpuech JM (2007) The sublethal effects of pesticides on beneficial arthropods. Annu Rev Entomol 52:81–106

  22. Dodds KJ, Orwig DA (2011) An invasive urban forest pest invades natural environments—Asian longhorned beetle in northeastern US hardwood forests. Can J for Res 41(9):1729–1742. https://doi.org/10.1139/x11-097

    Article  Google Scholar 

  23. Duan JJ, Aparicio E, Tatman D et al (2016) Potential new associations of North American parasitoids with the invasive Asian longhorned beetle (Coleoptera: Cerambycidae) for biological control. J Econ Entomol 109(2):699–704. https://doi.org/10.1093/jee/tov328

    Article  PubMed  Google Scholar 

  24. EFSF (Etat de Fribourg, Staat Freiburg) (2020) https://www.fr.ch/sfn/energie-agriculture-et-environnement/forets/le-capricorne-asiatique. Accessed 24 May 2020

  25. Elmes A, Rogan J, Williams C et al (2019) Modeling the potential dispersal of Asian longhorned beetle using circuit theory. Prof Geogr 71(4):580–594. https://doi.org/10.1080/00330124.2019.1611458

    Article  Google Scholar 

  26. EPPO RS (2001–2020) EPPO Reporting Service online archives http://archives.eppo.int/EPPOReporting/Reporting_Archives.html. Accessed January 2020- May 2021

  27. EPPO (European and Mediterranean Plant Protection Organization) (2013a) PM 9/16 (1) Anoplophora chinensis: procedures for official control. EPPO Bull 43:518-526

  28. EPPO (European and Mediterranean Plant Protection Organization) (2013b) PM 9/15 (1) Anoplophora glabripennis: Procedures for official control. EPPO Bull 43:510-517

  29. EPPO - Global Database. https://gd.eppo.int/

  30. Errico M (2012) Asian longhorned beetle detector dog pilot project. In: Proceedings, 23rd USDA Interagency Research Forum on Invasive Species, 10–13 January 2012, Annapolis, MD, pp 18

  31. EU (European Commission) (2010) Final report of a mission carried out in Austria from 07 to 11 June 2010 in order to evaluate the situation and control for Anoplophora glabripennis. EC Health and Consumers Directorate-General, Directorate F-Food and Veterinary Office, 12 pp

  32. EU (European Commission) (2012) Commission Implementing Decision 2012/138/EU of 1 March 2012 as regards emergency measures to prevent the introduction into and the spread within the Union of Anoplophora chinensis (Forster). Off J EU 64:38–47

  33. EU (European Commission) (2015) Commission implementing decision 2015/893 of 9 June 2015 as regards measures to prevent the introduction into and the spread within the Union of Anoplophora glabripennis (Motschulsky). Off J EU 146:16–28

  34. EU (European Union) (2016) "Regulation (EU) 2016/2031 of the European Parliament of the Council of 26 October 2016 on protective measures against pests of plants, amending Regulations (EU) No 228/2013, (EU) No 652/2014 and (EU) No 1143/2014 of the European Parliament and of the Council and repealing Council Directives 69/464/EEC, 74/647/EEC, 93/85/EEC, 98/57/EC, 2000/29/EC, 2006/91/EC and 2007/33/EC." Off J EU 317: 4-104

  35. EU (European Union) (2019) “Commission Delegated Regulation (EU) 2019/1702 of 1 August 2019 supplementing regulation (EU) 2016/2031 of the European Parliament and of the council by establishing the list of priority pests. Off J EU 260: 8–10

  36. Eyre D, Haack RA (2017) Invasive cerambycid pests and biosecurity measures. Chapter 13. In: Wang Q (ed) Cerambycidae of the world: biology and pest management. CRC Press, Boca Raton, pp 563–607

    Google Scholar 

  37. Eyre D, Macarthur R, Haack RA et al (2018) Variation in inspection efficacy by member states of wood packaging material entering the European Union. J Econ Entomol 111(2):707–715. https://doi.org/10.1093/jee/tox357

    Article  PubMed  Google Scholar 

  38. Faccoli M, Gatto P (2016) Analysis of costs and benefits of Asian longhorned beetle eradication in Italy. Forestry 89(3):301–309. https://doi.org/10.1093/forestry/cpv041

    Article  Google Scholar 

  39. Faccoli M, Favaro R, Concheri G et al (2016) Tree colonization by the Asian longhorn beetle, Anoplophora glabripennis (Coleoptera: Cerambycidae): effect of habitat and tree suitability. Insect Sci 23(2):288–296. https://doi.org/10.1111/1744-7917.12192

    CAS  Article  PubMed  Google Scholar 

  40. Fallon DJ, Solter LF, Keena M et al (2004) Susceptibility of Asian longhorned beetle, Anoplophora glabripennis (Motchulsky) (Coleoptera: Cerambycidae) to entomopathogenic nematodes. Biol Control 30(2):430–438. https://doi.org/10.1016/j.biocontrol.2003.12.002

    Article  Google Scholar 

  41. FAO (2019) Glossary of phytosanitary terms. International Standard for Phytosanitary Measures No. 5. Published by FAO on behalf of the Secretariat of the International Plant Protection Convention (IPPC), Rome

  42. Favaro R, Wichmann L, Ravn HP, Faccoli M (2015) Spatial spread and infestation risk assessment in the Asian longhorned beetle, Anoplophora glabripennis. Entomol Exp Appl 155(2):95–101. https://doi.org/10.1111/eea.12292

    Article  Google Scholar 

  43. Fisher JJ, Hajek AE (2014) Thermoregulatory behavior and fungal infection of Anoplophora glabripennis (Coleoptera: Cerambycidae). Environ Entomol 43(2):384–392. https://doi.org/10.1603/EN13267

    CAS  Article  PubMed  Google Scholar 

  44. Fisher JJ, Hajek AE (2016) Influence of mating and age on susceptibility of the beetle Anoplophora glabripennis to the fungal pathogen Metarhizium brunneum. J Invertebr Pathol 136:142–148. https://doi.org/10.1016/j.jip.2016.04.004

    Article  PubMed  Google Scholar 

  45. Fisher JJ, Castrillo LA, Donzelli BG, Hajek AE (2017) Starvation and imidacloprid exposure influence immune response by Anoplophora glabripennis (Coleoptera: Cerambycidae) to a fungal pathogen. J Econ Entomol 110(4):1451–1459. https://doi.org/10.1093/jee/tox124

    CAS  Article  PubMed  Google Scholar 

  46. Fournier RE, Turgeon JJ (2017) Surveillance during monitoring phase of an eradication programme against Anoplophora glabripennis (Motschulsky) guided by a spatial decision support system. Biol Invasions 19(10):3013–3035. https://doi.org/10.1007/s10530-017-1505-2

    Article  Google Scholar 

  47. Fragnière Y, Forster B, Hölling D et al (2018) A local risk map using field observations of the Asian longhorned beetle to optimize monitoring activities. J Appl Entomol 142(6):578–588. https://doi.org/10.1111/jen.12491

    Article  Google Scholar 

  48. Goble TA, Rehner SA, Long SJ et al (2014) Comparing virulence of North American Beauveria brongniartii and commercial pathogenic fungi against Asian longhorned beetles. Biol Control 72:91–97. https://doi.org/10.1016/j.biocontrol.2014.02.006

    Article  Google Scholar 

  49. Goble TA, Gardescu S, Fisher JJ et al (2016) Conidial production, persistence and pathogenicity of hydromulch formulations of Metarhizium brunneum F52 microsclerotia under forest conditions. Biol Control 95:83–93. https://doi.org/10.1016/j.biocontrol.2016.01.003

    Article  Google Scholar 

  50. Golec JR, Duan JJ, Aparicio E et al (2016) Life history, reproductive biology, and larval development of Ontsira mellipes (Hymenoptera: Braconidae), a newly associated parasitoid of the invasive Asian longhorned beetle (Coleoptera: Cerambycidae). J Econ Entomol 109(4):1545–1554. https://doi.org/10.1093/jee/tow122

    Article  PubMed  Google Scholar 

  51. Golec JR, Li F, Cao L et al (2018) Mortality factors of Anoplophora glabripennis (Coleoptera: Cerambycidae) infesting Salix and Populus in central, northwest, and northeast China. Biol Control 126:198–208. https://doi.org/10.1016/j.biocontrol.2018.05.015

    Article  Google Scholar 

  52. Gould JR, Aflague B, Murphy TC et al (2018) Collecting nontarget wood-boring insects for host-specificity testing of natural enemies of cerambycids: a case study of Dastarcus helophoroides (Coleoptera: Bothrideridae), a parasitoid of the Asian longhorned beetle (Coleoptera: Cerambycidae). Environ Entomol 47(6):1440–1450. https://doi.org/10.1093/ee/nvy121

    Article  PubMed  Google Scholar 

  53. Gugliuzzo A, Biedermann PHW, Carrillo D et al (2021) Recent advances toward the sustainable management of invasive Xylosandrus ambrosia beetles. J Pest Sci 94:615–637. https://doi.org/10.1007/s10340-021-01382-3

    Article  Google Scholar 

  54. Haack RA (2006) Exotic bark-and wood-boring Coleoptera in the United States: recent establishments and interceptions. Can J for Res 36(2):269–288. https://doi.org/10.1139/x05-249

    Article  Google Scholar 

  55. Haack RA, Hérard F, Sun J, Turgeon JJ (2010) Managing invasive populations of Asian longhorned beetle and citrus longhorned beetle: a worldwide perspective. Ann Rev Entomol 55:521–546. https://doi.org/10.1146/annurev-ento-112408-085427

    CAS  Article  Google Scholar 

  56. Haack RA, Britton KO, Brockerhoff EG et al (2014) Effectiveness of the International Phytosanitary Standard ISPM No 15 on reducing wood borer infestation rates in wood packaging material entering the United States. PLoS ONE. 9(5):e96611. https://doi.org/10.1371/journal.pone.0096611

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  57. Hansen L, Xu T, Wickham J et al (2015) Identification of a male-produced pheromone component of the Citrus longhorned beetle, Anoplophora chinensis. PLoS ONE 10(12):e0145355. https://doi.org/10.1371/journal.pone.0134358

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  58. Hérard F, Maspero M (2019) History of discoveries and management of the citrus longhorned beetle, Anoplophora chinensis. Europe J Pest Sci 92(1):117–130. https://doi.org/10.1007/s10340-018-1014-9

    Article  Google Scholar 

  59. Hérard F, Ciampitti M, Maspero M et al (2006) Anoplophora species in Europe: infestations and management processes 1. EPPO Bull 36(3):470–474. https://doi.org/10.1111/j.1365-2338.2006.01046.x

    Article  Google Scholar 

  60. Hérard F, Maspero M, Ramualde N (2013) Potential candidates for biological control of the Asian longhorned beetle (Anoplophora glabripennis) and the citrus longhorned beetle (Anoplophora chinensis) in Italy. J Entomol Acarol Res 45(1s):22

    Google Scholar 

  61. Hérard F, Cocquempot C, Lopez J et al (2005a) Field study to evaluate the egg parasitoid Aprostocetus anoplophorae sp. n. (Hymenoptera: Eulophidae) on two Anoplophora hosts. In: Gottschalk KW (ed) Proceedings, XV US Department of Agriculture interagency research forum on gypsy moth and other invasive species 2004; 2004 January 13–16; United States Department of Agriculture, Annapolis, MD, pp 40–42

  62. Hérard F, Bon M‐C, Maspero M, et al (2005b) Survey and evaluation of potential natural enemies of Anoplophora glabripennis and A. chinensis. In: Gottschalk KW (ed) Proceedings, XV US Department of Agriculture interagency research forum on gypsy moth and other invasive species 2004; 2004 January 13–16; United States Department of Agriculture, Annapolis, MD, pp 34

  63. Hérard F, Maspero M, Bon MC (2017) Accidental introduction into Italy and establishment of Aprostocetus fukutai (Hymenoptera: Eulophidae) in Citrus Longhorned Beetle infestations. In: Mason PG, Gillespie DR, Vincent C (eds) Proceedings of the 5th International Symposium on Biological Control of Arthropods, September 11–15, Langkawi, Malaysia, pp 15–18

  64. Hoover K, Keena M, Nehme M et al (2014) Sex-specific trail pheromone mediates complex mate finding behavior in Anoplophora glabripennis. J Chem Ecol 40(2):169–180. https://doi.org/10.1007/s10886-014-0385-5

    CAS  Article  PubMed  Google Scholar 

  65. EFSA (European Food Safety Authority), Hoppe B, Schrader G et al (2019a) Pest survey card on Anoplophora chinensis. EFSA Supporting Publications, EN-1749, 22 pp https://doi.org/10.2903/sp.efsa.2019.EN-1749

  66. EFSA (European Food Safety Authority), Hoppe B, Schrader G et al (2019b) Pest survey card on Anoplophora glabripennis. EFSA Supporting Publications. 16(12): EN-1750, 30 pp https://doi.org/10.2903/sp.efsa.2019.EN-1750

  67. Fukaya M, Akino T, Yasuda T et al (2000) Hydrocarbon components in contact sex pheromone of the white-spotted longicorn beetle, Anoplophora malasiaca (Thomson)(Coleoptera: Cerambycidae) and pheromonal activity of synthetic hydrocarbons. Entomol Sci 3(2):211–218

  68. Hoyer-Tomiczek U, Sauseng G (2013) Sniffer dogs to find Anoplophora spp. infested plants. J Entomol Acarol Res 45(1s):10–12

    Google Scholar 

  69. Hoyer-Tomiczek U, Sauseng G, Hoch G (2016) Scent detection dogs for the Asian longhorn beetle Anoplophora Glabripennis. EPPO Bull 46(1):148–155. https://doi.org/10.1111/epp.12282

    Article  Google Scholar 

  70. Hu J, Angeli S, Schuetz S et al (2009) Ecology and management of exotic and endemic Asian longhorned beetle Anoplophora glabripennis. Agric for Entomol 11(4):359–375. https://doi.org/10.1111/j.1461-9563.2009.00443.x

    Article  Google Scholar 

  71. Huang J, Qu B, Fang G et al (2020) The drivers of the Asian longhorned beetle disaster show significant spatial heterogeneity. Ecol Indic 117:106680. https://doi.org/10.1016/j.ecolind.2020.106680

    Article  Google Scholar 

  72. Hull-Sanders H, Pepper E, Davis K, Trotter RT III (2017) Description of an establishment event by the invasive Asian longhorned beetle (Anoplophora glabripennis) in a suburban landscape in the northeastern United States. PLoS ONE 12(7):e0181655. https://doi.org/10.1371/journal.pone.0181655

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  73. IPPC (International Plant Protection Convention) (2005) International Standards for Phytosanitary Measures: ISPM 23, Guidelines for inspection. Food and Agriculture Organization of the United Nations, Rome

  74. IPPC (International Plant Protection Convention) (2008) International Standards for Phytosanitary Measures: ISPM 31, Methodologies for Sampling of Consignments. Food and Agriculture Organization of the United Nations, Rome

  75. IPPC (International Plant Protection Convention) (2009) International Standards for Phytosanitary Measures: revision of ISPM No. 15, Regulation of wood packaging material in international trade. Food and Agriculture Organization of the United Nations, Rome

  76. Javal M, Roques A, Roux G, Laparie M (2018a) Respiration-based monitoring of metabolic rate following cold-exposure in two invasive Anoplophora species depending on acclimation regime. Comp Biochem Physiol Part A Mol Integr Physiol 216:20–27. https://doi.org/10.1016/j.cbpa.2017.10.031

    CAS  Article  Google Scholar 

  77. Javal M, Roux G, Roques A, Sauvard D (2018b) Asian long-horned beetle dispersal potential estimated in computer-linked flight mills. J Appl Entomol 142(1–2):282–286. https://doi.org/10.1111/jen.12408

    CAS  Article  Google Scholar 

  78. Javal M, Lombaert E, Tsykun T et al (2019a) Deciphering the worldwide invasion of the Asian long-horned beetle: a recurrent invasion process from the native area together with a bridgehead effect. Mol Ecol 28(5):951–967. https://doi.org/10.1111/mec.15030

    Article  PubMed  Google Scholar 

  79. Javal M, Roques A, Haran J et al (2019b) Complex invasion history of the Asian long-horned beetle: fifteen years after first detection in Europe. J Pest Sci 92:173–187. https://doi.org/10.1007/s10340-017-0917-1

    Article  Google Scholar 

  80. Jucker C, Valentini M, Colombo M et al (2007) Anoplophora chinensis-Eradication programme in Lombardia (Italy). https://www.eppo.int/ACTIVITIES/plant_quarantine/shortnotes_qps/anoplophora_chinensis_eradication. Accessed 24 May 2020

  81. Kean JM, Suckling DM, Sullivan NJ et al (2015). Global eradication and response database (GERDA). http://b3.net.nz/gerda/index.php

  82. Keena MA (2018) Factors that influence flight propensity in Anoplophora glabripennis (Coleoptera: Cerambycidae). Environ Entomol 47(5):1233–1241. https://doi.org/10.1093/ee/nvy100

    Article  PubMed  Google Scholar 

  83. Lee S, Lee Y, Lee S (2020) Population genetic structure of Anoplophora glabripennis in South Korea: invasive populations in the native range? J Pest Sci 93:1181–1196. https://doi.org/10.1007/s10340-020-01245-3

    Article  Google Scholar 

  84. Lesieur V, Lombaert E, Guillemaud T et al (2019) The rapid spread of Leptoglossus occidentalis in Europe: a bridgehead invasion. J Pest Sci 92:189–200. https://doi.org/10.1007/s10340-018-0993-x

    Article  Google Scholar 

  85. Li W (2004) Degradation and restoration of forest ecosystems in China. For Ecol Manag 201(1):33–41. https://doi.org/10.1016/j.foreco.2004.06.010

    Article  Google Scholar 

  86. Li ML, Wang PX, Ma F, Yang ZQ (2007) Study on the parasitic efficiency of Dastarcus helophoroides on Anoplophora glabripennis. J Northwest A & F Univ (Nat Sci Edition) 35(6):152–156

    Google Scholar 

  87. Li G, Gao R, Smith MT, Kong L (2010) Study on dispersal of Anoplophora glabripennis (Motsch.) (Coleoptera: Cerambycidae) population. For Res Beijing 23(5):678–684

    Google Scholar 

  88. Li F, Zhang YL, Wang XY et al (2020) Discovery of parasitoids of Anoplophora glabripennis (Coleoptera: Cerambycidae) and their seasonal abundance in China using sentinel host eggs and larvae. J Econ Entomol 113(4):1656–1665. https://doi.org/10.1093/jee/toaa068

    Article  PubMed  Google Scholar 

  89. Liebhold AM, Kean JM (2019) Eradication and containment of non-native forest insects: successes and failures. J Pest Sci 92:83–91. https://doi.org/10.1007/s10340-018-1056-z

    Article  Google Scholar 

  90. Lingafelter SW, Hoebeke ER (2002) Revision of the genus Anoplophora (Coleoptera: Cerambycidae). The Entomological Society of Washington, Washington, DC

    Google Scholar 

  91. Lopez VM, Hoddle MS, Francese JA et al (2017) Assessing flight potential of the invasive Asian longhorned beetle (Coleoptera: Cerambycidae) with computerized flight mills. J Econ Entomol 110(3):1070–1077. https://doi.org/10.1093/jee/tox046

    Article  PubMed  Google Scholar 

  92. Lupi D, Favaro R, Jucker C et al (2017) Reproductive biology of Sclerodermus brevicornis, a European parasitoid developing on three species of invasive longhorn beetles. Biol Control 105:40–48. https://doi.org/10.1016/j.biocontrol.2016.11.008

    Article  Google Scholar 

  93. Makihara H (2002) An exotic threat from China to North America, and this affair has affected to Japan: an Asian longhorned beetle, Anoplophora glabripennis (Motschulsky) (Coleoptera: Cerambycidae). Nat Insects 37(3):20–22

    Google Scholar 

  94. Mankin RW, Smith MT, Tropp JM et al (2008) Detection of Anoplophora glabripennis (Coleoptera: Cerambycidae) larvae in different host trees and tissues by automated analyses of sound-impulse frequency and temporal patterns. J Econ Entomol 101(3):838–849. https://doi.org/10.1093/jee/101.3.838

    CAS  Article  PubMed  Google Scholar 

  95. Maspero M (2015) Managing invasive populations of Anoplophora chinensis and A. glabripennis in Lombardy. Doctoral dissertation, ALMA DL, University of Bologna. https://doi.org/10.6092/unibo/amsdottorato/7184

  96. Menail AH, Boutefnouchet-Bouchema WF, Haddad N, et al (2020) Effects of thiamethoxam and spinosad on the survival and hypopharyngeal glands of the African honey bee (Apis mellifera intermissa). Entomol Gen 40:207–215

  97. Meng PS, Hoover K, Keena MA (2015) Asian longhorned beetle (Coleoptera: Cerambycidae), an introduced pest of maple and other hardwood trees in North America and Europe. J Integr Pest Manag 6(1):1–12. https://doi.org/10.1093/jipm/pmv003

    Article  Google Scholar 

  98. Myers SW, Bailey SM (2011) Evaluation of a heat treatment schedule for the Asian longhorned beetle, Anoplophora glabripennis (Coleoptera: Cerambycidae). For Prod J 61(1):46–49. https://doi.org/10.13073/0015-7473-61.1.46

    Article  Google Scholar 

  99. Nehme ME, Keena MA, Zhang A et al (2009) Attraction of Anoplophora glabripennis to male-produced pheromone and plant volatiles. Environ Entomol 38(6):1745–1755. https://doi.org/10.1603/022.038.0628

    CAS  Article  PubMed  Google Scholar 

  100. Nehme ME, Keena MA, Zhang A et al (2010) Evaluating the use of male-produced pheromone components and plant volatiles in two trap designs to monitor Anoplophora glabripennis. Environ Entomol 39(1):169–176. https://doi.org/10.1603/EN09177

    CAS  Article  PubMed  Google Scholar 

  101. Nehme ME, Trotter RT, Keena MA et al (2014) Development and evaluation of a trapping system for Anoplophora glabripennis (Coleoptera: Cerambycidae) in the United States. Environ Entomol 43(4):1034–1044. https://doi.org/10.1603/EN14049

    CAS  Article  PubMed  Google Scholar 

  102. Nei M, Maruyama T, Chakraborty R (1975) The bottleneck effect and genetic variability in populations. Evolution 29(1):1–10. https://doi.org/10.2307/2407137

    Article  PubMed  Google Scholar 

  103. Nowak DJ, Pasek JE, Sequeira RA et al (2001) Potential effect of Anoplophora glabripennis (Coleoptera: Cerambycidae) on urban trees in the United States. J Econ Entomol 94(1):116–122. https://doi.org/10.1603/0022-0493-94.1.116

    CAS  Article  PubMed  Google Scholar 

  104. Ohbayashi N, Ogawa J, Su ZH (2009) Phylogenetic analysis of the Lamiine genus Anoplophora and its relatives (Coleoptera, Cerambycidae) based on the mitochondrial COI gene. Spec Bull Jap Soc Coleop 7:309–324

  105. Pan HY (2005) Review of the Asian longhorned beetle: research, biology, distribution and management in China. Food and Agriculture Organization, Forestry Department. Working Paper FBS/6E. FAO, Rome. http://www.fao.org/tempref/docrep/fao/012/j6355e/j6355e00.pdf Accessed 5 June 2020

  106. Pedlar JH, McKenney DW, Yemshanov D et al (2020) Potential economic impacts of the Asian longhorned beetle (Coleoptera: Cerambycidae) in Eastern Canada. J Econ Entomol 113(2):839–850. https://doi.org/10.1093/jee/toz317

    Article  PubMed  Google Scholar 

  107. Pelosi C, Bertrand C, Daniele G et al (2021) Residues of currently used pesticides in soils and earthworms: a silent threat? Agric Ecosyst Environ 305:107167. https://doi.org/10.1016/j.agee.2020.107167

    Article  Google Scholar 

  108. Peng J, Liu Y (1992) Iconography of forest insects in Hunan China. Hunan Forestry Department/Institute of Zoology, Acad Sin

  109. Pimentel D (2005) Environmental and economic costs of the application of pesticides primarily in the United States. In: Pimentel D, Peshin R (eds) Integrated Pest Management. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7796-5_2

    Chapter  Google Scholar 

  110. Sawyer AJ, Panagakos WS, Horner AE et al (2011) Asian longhorned beetle, over the river and through the woods: habitat-dependent population spread. In: McManus, Katherine A, Gottschalk KW (eds) Proceedings, 21st US Department of Agriculture interagency research forum on invasive species 2010; 2010 January 12–15; United States Department of Agriculture, Annapolis, MD, pp 52–54

  111. Sawyer AJ (2005) Annotated Categorization of ALB Host Trees [revised]. USDA APHIS-PPQ, Otis Pest Survey Detection and Exclusion Laboratory http://www.uvm.edu/albeetle/hosts.html Accessed 4 August 2020

  112. SFRL (Servizio Fitosanitario Regione Lombardia) (2020) Boll Ufficiale. Serie Ordinaria n. 7 - 12 February 2020

  113. Sjöman H, Östberg J, Nilsson J (2014) Review of host trees for the wood-boring pests Anoplophora glabripennis and Anoplophora chinensis: an urban forest perspective. Arboric Urban for 40(3):143–164

    Google Scholar 

  114. Smith MT, Bancroft J, Li G et al (2001) Dispersal of Anoplophora glabripennis (Cerambycidae). Environ Entomol 30(6):1036–1040. https://doi.org/10.1603/0046-225X-30.6.1036

    Article  Google Scholar 

  115. Smith MT, Tobin PC, Bancroft J et al (2004) Dispersal and spatiotemporal dynamics of Asian longhorned beetle (Coleoptera: Cerambycidae) in China. Environ Entomol 33(2):435–442. https://doi.org/10.1603/0046-225X-33.2.435

    Article  Google Scholar 

  116. Stefan M, Markham C, Benjamin R, Coath J (2014) Case study. Invasive insects in plant biosecurity: the Asian longhorned beetle eradication program. In: Gordh G, McKirdy S (eds) The Handbook of Plant Biosecurity. Springer, Dordrecht, pp 485–517. https://doi.org/10.1007/978-94-007-7365-3_16

    Chapter  Google Scholar 

  117. StMELF (Bayerisches Staatsministerium für Ernährung, Landwirtschaft und Forsten) (2020) https://www.lfl.bayern.de/ips/pflanzengesundheit/024167/index.php. Accessed 3rd January 2020

  118. Strangi A, Binazzi F, Peverieri GS, Roversi PF (2017) The Anoplophora chinensis (Förster) (Coleoptera Cerambycidae Lamiinae) outbreaks in Italy: a possible geographical origin. Redia 100:175–179. https://doi.org/10.19263/REDIA-100.17.22

    Article  Google Scholar 

  119. Straw NA, Fielding NJ, Tilbury C et al (2016) History and development of an isolated outbreak of Asian longhorn beetle Anoplophora glabripennis (Coleoptera: Cerambycidae) in southern England. Agric for Entomol 18(3):280–293. https://doi.org/10.1111/afe.12160

    Article  Google Scholar 

  120. Sutin A, Yakubovskiy A, Salloum HR et al (2019) Towards an automated acoustic detection algorithm for wood-boring beetle larvae (Coleoptera: Cerambycidae and Buprestidae). J Econ Entomol 112(3):1327–1336. https://doi.org/10.1093/jee/toz016

    Article  PubMed  Google Scholar 

  121. Takahashi N, Ito M (2005) Detection and eradication of the Asian longhorned beetle in Yokohama, Japan. Res Bull Plant Prot Serv (japan) 41:83–85

    Google Scholar 

  122. Taning CNT, Vanommeslaeghe A, Smagghe G (2019) With or without foraging for food, field-realistic concentrations of sulfoxaflor are equally toxic to bumblebees (Bombus terrestris). Entomol Gen 39:151–155

  123. Tobin PC, Kean JM, Suckling DM et al (2014) Determinants of successful arthropod eradication programs. Biol Invasions 16:401–414. https://doi.org/10.1007/s10530-013-0529-5

    Article  Google Scholar 

  124. Trotter RT, Hull-Sanders HM (2015) Quantifying dispersal of the Asian longhorned beetle (Anoplophora glabripennis, Coleoptera) with incomplete data and behavioral knowledge. Biol Invasions 17:3359–3369. https://doi.org/10.1007/s10530-015-0961-9

    Article  Google Scholar 

  125. Trotter RT, Keena MA (2016) A variable-instar climate-driven individual beetle-based phenology model for the invasive Asian longhorned beetle (Coleoptera: Cerambycidae). Environ Entomol 45(6):1360–1370. https://doi.org/10.1093/ee/nvw108

    Article  PubMed  Google Scholar 

  126. Trotter RT, Pepper E, Davis K, Vazquez R (2019) Anisotropic dispersal by the Asian longhorned beetle (Anoplophora glabripennis): quantifying spatial risk and eradication effort with limited biological data. Biol Invasions 21:1179–1195. https://doi.org/10.1007/s10530-018-1894-x

    Article  Google Scholar 

  127. Tsykun T, Javal M, Hölling D et al (2019) Fine-scale invasion genetics of the quarantine pest, Anoplophora glabripennis, reconstructed in single outbreaks. Sci Rep 9:19436. https://doi.org/10.1038/s41598-019-55698-3

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  128. Turgeon JJ, Pedlar J, De Groot P et al (2010) Density and location of simulated signs of injury affect efficacy of ground surveys for Asian longhorned beetle. Can Entomol 142(1):80–96. https://doi.org/10.4039/n09-049

    Article  Google Scholar 

  129. Turgeon JJ, Orr M, Grant C et al (2015) Decade-old satellite infestation of Anoplophora glabripennis Motschulsky (Coleoptera: Cerambycidae) found in Ontario, Canada outside regulated area of founder population. Coleopt Bull 69(4):674–678

    Article  Google Scholar 

  130. Turner RM, Plank MJ, Brockerhoff EG et al (2020) Considering unseen arrivals in predictions of establishment risk based on border biosecurity interceptions. Ecol Appl 30:e02194. https://doi.org/10.1002/eap.2194

    Article  PubMed  Google Scholar 

  131. Turner RM, Brockerhoff EG, Bertelsmeier C et al (2021) Worldwide border interceptions provide a window into human-mediated global insect movement. Ecol Appl. https://doi.org/10.1002/eap.2412

    Article  PubMed  PubMed Central  Google Scholar 

  132. USDA-APHIS (United States Department of Agriculture- Animal and Plant Health Inspection Service) (2014) Asian longhorned beetle response guidelines. https://www.aphis.usda.gov/plant_health/plant_pest_info/asian_lhb/downloads/response-guidelines.pdf. Accessed 5 June 2020

  133. USDA-APHIS (United States Department of Agriculture- Animal and Plant Health Inspection Service) (2020b) ALB Survey Protocol. https://www.aphis.usda.gov/aphis/ourfocus/pfecollanthealth/plant-pest-and-disease-programs/pests-and-diseases/asian-longhorned-beetle/ct_survey. Accessed 5 June 2020

  134. USDA-APHIS (United States Department of Agriculture- Animal and Plant Health Inspection Service) (2020a) U.S. Regulated Plant Pest Table. https://www.aphis.usda.gov/aphis/ourfocus/planthealth/import-information/rppl/rppl-table. Accessed 10 August 2020

  135. USDA-APHIS (United States Department of Agriculture- Animal and Plant Health Inspection Service) (2021) Plant Protection Today - PPQ Scientists Evaluate Wasp’s Ability to Detect and Attack the Asian Longhorned Beetle. https://www.aphis.usda.gov/aphis/ourfocus/planthealth/ppq-program-overview/plant-protection-today/articles/alb-biocontrol. Accessed 29 July 2021

  136. Van der Gaag DJ, Loomans AJM (2014) Host plants of Anoplophora glabripennis, a review. EPPO Bull 44(3):518–528. https://doi.org/10.1111/epp.12151

    Article  Google Scholar 

  137. Van der Gaag DJ, Sinatra G, Roversi PF et al (2010) Evaluation of eradication measures against Anoplophora chinensis in early stage infestations in Europe. EPPO Bull 40(2):176–187. https://doi.org/10.1111/j.1365-2338.2010.02381.x

    Article  Google Scholar 

  138. Wang X, Aparicio EM (2020) Reproductive traits of Ontsira mellipes (Hymenoptera: Braconidae), a North American parasitoid, as a novel biological control agent for exotic Anoplophora glabripennis (Coleoptera: Cerambycidae). J Econ Entomol 113(5):2112–2119. https://doi.org/10.1093/jee/toaa160

    Article  PubMed  Google Scholar 

  139. Wang B, Gao R, Mastro VC, Reardon RC (2005) Toxicity of four systemic neonicotinoids to adults of Anoplophora glabripennis (Coleoptera: Cerambycidae). J Econ Entomol 98(6):2292–2300. https://doi.org/10.1093/jee/98.6.2292

    CAS  Article  PubMed  Google Scholar 

  140. Wang X, Aparicio EM, Murphy TC et al (2019) Assessing the host range of the North American parasitoid Ontsira mellipes: potential for biological control of Asian longhorned beetle. Biol Control 137:104028. https://doi.org/10.1016/j.biocontrol.2019.104028

    Article  Google Scholar 

  141. Wang JH, Che SC, Qiu LF et al (2020a) Efficacy of emamectin benzoate trunk injection against the Asian long-horned beetle [Anoplophora glabripennis (Coleoptera: Cerambycidae)]. J Econ Entomol 113(1):340–347. https://doi.org/10.1093/jee/toz299

    CAS  Article  PubMed  Google Scholar 

  142. Wang X, Aparicio EM, Duan JJ et al (2020b) Optimizing parasitoid and host densities for efficient rearing of Ontsira mellipes (Hymenoptera: Braconidae) on Asian longhorned beetle (Coleoptera: Cerambycidae). Environ Entomol 49(5):1041–1048. https://doi.org/10.1093/ee/nvaa086

    Article  PubMed  Google Scholar 

  143. Wang X, Wang XY, Kenis M et al (2021a) Exploring the potential for novel associations of generalist parasitoids for biological control of invasive woodboring beetles. Biocontrol 66(1):97–112. https://doi.org/10.1007/s10526-020-10039-6

    Article  Google Scholar 

  144. Wang X, Ramualde N, Aparicio EM et al (2021b) Optimal conditions for diapause survival of Aprostocetus fukutai, an egg parasitoid for biological control of Anoplophora chinensis. Insects 12(6):535. https://doi.org/10.3390/insects12060535

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  145. Wen J, Li Y, Xia N, Luo Y (1998) Study on dispersal pattern of Anoplophora glabripennis adults in poplars. Acta Ecol Sin 18(3):269–277

    Google Scholar 

  146. Wickham JD, Xu Z, Teale SA (2012) Evidence for a female-produced, long range pheromone of Anoplophora glabripennis (Coleoptera: Cerambycidae). Insect Sci 19:355–371. https://doi.org/10.1111/j.1744-7917.2012.01504.x

    CAS  Article  Google Scholar 

  147. Williams DW, Lee HP, Kim IK (2004a) Distribution and abundance of Anoplophora glabripennis (Coleoptera: Cerambycidae) in natural Acer stands in South Korea. Environ Entomol 33(3):540–545. https://doi.org/10.1603/0046-225X-33.3.540

    Article  Google Scholar 

  148. Williams DW, Li G, Gao R (2004b) Tracking movements of individual Anoplophora glabripennis (Coleoptera: Cerambycidae) adults: application of harmonic radar. Environ Entomol 33(3):644–649. https://doi.org/10.1603/0046-225X-33.3.644

    Article  Google Scholar 

  149. WITS (World Integrated Trade Solution) (2021). http://wits.worldbank.org. Accessed 16 July 2021

  150. Xu T, Teale SA (2021) Chemical ecology of the Asian Longhorn Beetle, Anoplophora glabripennis. J Chem Ecol 47:489–503. https://doi.org/10.1007/s10886-021-01280-z

    CAS  Article  PubMed  Google Scholar 

  151. Xu T, Hansen L, Cha DH et al (2020a) Identification of a female-produced pheromone in a destructive invasive species: Asian longhorn beetle, Anoplophora glabripennis. J Pest Sci 93:1321–1332. https://doi.org/10.1007/s10340-020-01229-3

    Article  Google Scholar 

  152. Xu T, Hansen L, Teale SA (2020b) Mating and adult feeding behaviour influence pheromone production in female Asian longhorn beetle Anoplophora glabripennis (Coleoptera: Cerambycidae). Agric for Entomol 23:276–286. https://doi.org/10.1111/afe.12430

    Article  Google Scholar 

  153. Yasui H (2009) Chemical communication in mate location and recognition in the white-spotted longicorn beetle, Anoplophora malasiaca (Coleoptera: Cerambycidae). App Entomol Zool 44:183–194. https://doi.org/10.1303/aez.2009.183

    CAS  Article  Google Scholar 

  154. Yasui H, Yasuda T, Fukaya M et al (2007) Host plant chemicals serve intraspecific communication in the white-spotted longicorn beetle, Anoplophora malasiaca (Thomson) (Coleoptera: Cerambycidae). App Entomol Zool 42:255–268. https://doi.org/10.1303/aez.2007.255

    CAS  Article  Google Scholar 

  155. Yasui H, Akino T, Fukaya M et al (2008) Sesquiterpene hydrocarbons: kairomones with a releaser effect in the sexual communication of the white-spotted longicorn beetle, Anoplophora malasiaca (Thomson) (Coleoptera: Cerambycidae). Chemoecology 18:233–242. https://doi.org/10.1007/s00049-008-0410-7

    CAS  Article  Google Scholar 

  156. Yasui H, Akino T, Yasuda T et al (2003) Ketone components in the contact sex pheromone of the white-spotted longicorn beetle, Anoplophora malasiaca, and pheromonal activity of synthetic ketones. Entomol Exp Appl 107(3):167–176

  157. Yemshanov D, Haight RG, Koch FH et al (2019) Optimizing surveillance strategies for early detection of invasive alien species. Ecol Econ 162:87–99. https://doi.org/10.1016/j.ecolecon.2019.04.030

    Article  Google Scholar 

  158. Zhang A, Oliver JE, Aldrich JR et al (2002) Stimulatory beetle volatiles for the Asian longhorned beetle, Anoplophora glabripennis (Motschulsky). Z Naturforsch C 57(5–6):553–558. https://doi.org/10.1515/znc-2002-5-626

    CAS  Article  PubMed  Google Scholar 

  159. Zhang A, Oliver JE, Chauhan K et al (2003) Evidence for contact sex recognition pheromone of the Asian longhorned beetle, Anoplophora glabripennis (Coleoptera: Cerambycidae). Naturwissenschaften 90(9):410–413. https://doi.org/10.1007/s00114-003-0452-1

    CAS  Article  PubMed  Google Scholar 

  160. Zhao Z, Reddy GVP, Chen L et al (2020) The synergy between climate change and transportation activities drives the propagation of an invasive fruit fly. J Pest Sci 93:615–625. https://doi.org/10.1007/s10340-019-01183-9

    Article  Google Scholar 

  161. Zorović M, Čokl A (2015) Laser vibrometry as a diagnostic tool for detecting wood-boring beetle larvae. J Pest Sci 88:107–112. https://doi.org/10.1007/s10340-014-0567-5

    Article  Google Scholar 

Download references

Acknowledgements

We thank Françoise Petter for providing Anoplophora spp. interception data for Europe, and USDA-APHIS and CFIA for interception data for North America. This work was partially supported by the National Socio-Environmental Synthesis Center (SESYNC) under funding received from the National Science Foundation DBI-1639145. Both S. Branco and M. Branco are partially supported by CEF, a research unit funded by Foundation for Science and Technology (FCT), Portugal (UID/AGR/00239/2019 and (UIDB/00239/2020). M. Faccoli was partially funded by the DOR program of the University of Padua.

Funding

This study was supported by the HOMED project (http://homed-project.eu/), which received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 771271.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sofia Branco.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest/competing interests.

Ethical approval

This study does not contain any experiments using any animal species that require ethical approval.

Consent for publication

All authors consent to the publication of this manuscript in Journal of Pest Science.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Jian Duan.

Supplementary Information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Branco, S., Faccoli, M., Brockerhoff, E.G. et al. Preventing invasions of Asian longhorn beetle and citrus longhorn beetle: are we on the right track?. J Pest Sci (2021). https://doi.org/10.1007/s10340-021-01431-x

Download citation

Keywords

  • Biological invasions
  • Anoplophora spp.
  • Eradication
  • Management strategies
  • Pest detection
  • Surveillance