Skip to main content

Silicon induces resistance to Diatraea saccharalis in sugarcane and it is compatible with the biological control agent Cotesia flavipes

Abstract

The sugarcane borer Diatraea saccharalis (Fabricius) (Lepidoptera: Crambidae) is a major pest of sugarcane (Saccharum sp.) (Glumiflorae: Poaceae) in Brazil and has been controlled efficiently with the parasitoid Cotesia flavipes (Cameron) (Hymenoptera: Braconidae). Addition of a silicon source to the soil induces resistance to insect pests in the host plant and can be integrated with other pest-management tactics such as biological control. This study evaluated the effects of silicon on the tritrophic interactions among sugarcane, D. saccharalis, and its natural enemy C. flavipes. Sugarcane varieties (one resistant and one susceptible to the sugarcane borer) cultivated with or without silicon constituted the four treatments. IACSP 96–2042 (susceptible variety) benefited from silicate addition as the length of tunnels bored by D. saccharalis was reduced by 43%. Tunnel length in the resistant variety (IACSP 96–3060) did not change with silicon application. The fresh mass and larval body size of the sugarcane borer were not affected by the treatments. Parasitism by C. flavipes on the sugarcane borer and the morphometric parameters of this parasitoid were not affected by silicon addition, nor were cane yield and quality parameters of the two sugarcane varieties. Treatment with silicon in the management of D. saccharalis was compatible with the parasitoid C. flavipes. This study constitutes the first field evaluation of the performance of C. flavipes combined with the effect of silicon as a resistance factor in D. saccharalis control in sugarcane.

This is a preview of subscription content, access via your institution.

References

  1. Aguiar ATE, Gonçalves C, Paterniani MEAGZ, Tucci MLS, Castro CEF (2014) Boletim 200 Instruções agrícolas para as principais culturas econômicas, 7a edn. Instituto Agronômico

  2. Anderson DL, Sosa O Jr (2001) Effect of silicon on expression of resistance to sugarcane borer (Diatraea saccharalis). J Am Soc Sugar Cane Technol 21:43–50

    Google Scholar 

  3. Arrigoni E de B, Dinardo-Miranda LL, Rosseto R (2002) Pragas da cana-de-açúcar - importância econômica e enfoques atuais. Piracicaba: STAB – Sociedade dos Técnicos Açucareiros e Alcooleiros do Brasil, p.1–4

  4. Atencio R, Goebel FR, Guerra A (2019) Effect of silicon and nitrogen on Diatraea tabernella Dyar in sugarcane in Panama. Sugar Tech 21:113–121. https://doi.org/10.1007/s12355-018-0634-y

    CAS  Article  Google Scholar 

  5. Barbosa JC, Maldonado Junior W (2015) AgroEstat - Sistema para Análises Estatísticas de Ensaios Agronômicos. Unesp

  6. Botelho PSM, Macedo N (2002) Cotesia flavipes para o controle de Diatraea saccharalis. In: Parra JRP, Botelho PSM, Corrêa-Ferreira BS, Bento JM (eds) Controle biológico no Brasil: parasitoides e predadores. Manole, pp 400–425

  7. Cai QN, Ma XM, Zhao X, Cao YZ, Yang XQ (2009) Effects of host plant resistance on insect pests and its parasitoid: a case study of wheat-aphid–parasitoid system. Biol Control 49:134–138. https://doi.org/10.1016/j.biocontrol.2008.12.009

    Article  Google Scholar 

  8. Camargo MS, Rocha G, Korndörfer GH (2013) Silicate fertilization of tropical soils: silicon availability and recovery index of sugarcane. Rev Bras Ciênc Solo 37:1267–1275. https://doi.org/10.1590/S0100-06832013000500016

    Article  Google Scholar 

  9. Camargo MS, Korndörfer GH, Foltran DE (2014a) Absorção de silício e incidência de broca-do-colmo em duas soqueiras de variedades de cana-de-açúcar. Biosci J 30:1304–1313. https://doi.org/10.1590/S0006-87052010000400020

    Article  Google Scholar 

  10. Camargo MS, Korndörfer GH, Wyler P (2014b) Silicate fertilization of sugarcane cultivated in tropical soils. Field Crops Res 167:64–75. https://doi.org/10.1016/j.fcr.2014.07.009

    Article  Google Scholar 

  11. Campos-Farinha AEC, Chaud Neto J (2000) Biologia reprodutiva de Cotesia flavipes (Hymenoptera: Braconidae). V. Avaliação do número de posturas, prole e razão sexual do parasitoide em relação ao tamanho do hospedeiro Diatraea saccharalis Fabricius (Lepidoptera: Pyralidae). Arq Inst Biol 67:249–252

    Google Scholar 

  12. Conab – Companhia Nacional de Abastecimento (2019) Acompanhamento da safra Brasileira: cana-de-açúcar – safra 2019/20, segundo levantamento, agosto 2019. Brasília, 2019. https://www.conab.gov.br/info-agro/safras/cana

  13. Conab - Companhia Nacional de Abastecimento (2020) Acompanhamento da safra Brasileira: cana-de-açúcar – safra 2020/21 n.1. Primeiro levantamento, maio 2020. https://www.conab.gov.br/info-agro/safras/cana/boletim-da-safra-de-cana-de-acucar

  14. Consecana – Conselho dos Produtores de Cana-de-açúcar, Açúcar e Álcool do Estado de São Paulo (2006). Manual de instruções. Consecana, Piracicaba. http://www.oricana.com.br/novosite/manual_consecana.pdf

  15. de Oliveira RS, Peñaflor MFGV, Gonçalves FG, Sampaio MV, Korndörfer AP, Silva WD, Bento JMS (2020) Silicon-induced changes in plant volatiles reduce attractiveness of wheat to the bird cherry-oat aphid Rhopalosiphum padi and attract the parasitoid Lysiphlebus testaceipes. PLoS ONE. https://doi.org/10.1371/journal.pone.0231005

    Article  PubMed  PubMed Central  Google Scholar 

  16. Dinardo-Miranda LL, Anjos IA, Costa VP, Fracasso JV (2012) Resistance of sugarcane cultivars to Diatraea saccharalis. Pesq Agropec Bras 47:1–7. https://doi.org/10.1590/S0100-204X2012000100001

    Article  Google Scholar 

  17. Dinardo-Miranda LL, Fracasso JV, Costa VP, Anjos IA, Lopes DOP (2013) Reação de cultivares de cana-de-açúcar à broca do colmo. Bragantia 72:29–34. https://doi.org/10.1590/S0006-87052013005000012

    Article  Google Scholar 

  18. Dowd PF, Sarath G, Mitchell RB, Saathoff AJ, Vogel KP (2013) Insect resistance of a full sib family of tetraploid switchgrass Panicum virgatum L. with varying lignin levels. Genet Resour Crop Evol 60:975–984. https://doi.org/10.1007/s10722-012-9893-8

    Article  Google Scholar 

  19. Elliot CL, Snyder GH (1991) Autoclave-induced digestion for the colorimetric determination of silicon in rice straw. J Agric Food Chem 39:1118–1119. https://doi.org/10.1021/jf00006a024

    Article  Google Scholar 

  20. Ferreira RS, Moraes JC (2011) Silicon influence on resistance induction against Bemisia tabaci biotype B (Genn.) (Hemiptera: Aleyrodidae) and on vegetative development in two soybean cultivars. Neotrop Entomol 40:495–500. https://doi.org/10.1590/S1519-566X2011000400014

    CAS  Article  PubMed  Google Scholar 

  21. Firmino A, Abreu HS, Portugal ACP, Nascimento AM, Souza EL, Pereira RPW, Monteiro MBO, Maêda JM (2006) Alterações ligno–anatômicas em Solanum gilo Raddi por aplicação de cálcio e boro como estratégia de defesa. Ciênc Agrotec 30:394–401. https://doi.org/10.1590/S1413-70542006000300002

    CAS  Article  Google Scholar 

  22. Frew A, Weston LA, Gurr GM (2019) Silicon reduces herbivore performance via different mechanisms, depending on host–plant species. Austral Ecol 44:1092–1097. https://doi.org/10.1111/aec.12767

    Article  Google Scholar 

  23. Garcia JF, Botelho PSM, Macedo LPM (2009) Criação do parasitóide Cotesia flavipes em laboratório. In: Bueno VHP (ed) Controle biológico de pragas: produção massal e controle de qualidade, 2nd edn. UFLA, pp 200–219

  24. Gomes FB, Moraes JC, Santos CD, Antunes CS (2008) Uso de silício como indutor de resistência em batata a Myzus persicae (Sulzer) (Hemiptera: Aphididae). Neotrop Entomol 37:185–190. https://doi.org/10.1590/S1519-566X2008000200013

    CAS  Article  PubMed  Google Scholar 

  25. Griffin M, Hogan B, Schmidt O (2015) Silicon reduces slug feeding on wheat seedlings. J Pest Sci 88:17–24. https://doi.org/10.1007/s10340-014-0579-1

    Article  Google Scholar 

  26. Hartley SE, DeGabriel JL (2016) The ecology of herbivore-induced silicon defences in grasses. Funct Ecol 30:1311–1322. https://doi.org/10.1111/1365-2435.12706

    Article  Google Scholar 

  27. Jammes F, Hu HC, Villiers F, Bouten R, Kwak JM (2011) Calcium-permeable channels in plant cells. FEBS J 22:4262–4276. https://doi.org/10.1111/j.1742-4658.2011.08369.x

    CAS  Article  Google Scholar 

  28. Keeping MG, Meyer JH (2002) Calcium silicate enhances resistance of sugarcane to the African stalk borer Eldana saccharina Walker (Lepidoptera: Pyralidae). Agric for Entomol 4:265–274. https://doi.org/10.1046/j.1461-9563.2002.00150.x

    Article  Google Scholar 

  29. Keeping MG, Meyer JH (2006) Silicon-mediated resistance of sugarcane to Eldana saccharina Walker (Lepidoptera: Pyralidae): effects of silicon source and cultivar. J Appl Entomol 130:410–420. https://doi.org/10.1111/j.1439-0418.2006.01081.x

    CAS  Article  Google Scholar 

  30. Keeping MG, Kvedaras OL, Bruton AG (2009) Epidermal silicon in sugarcane: cultivar differences and role in resistance to sugarcane borer Eldana saccharina. Environ Exp Bot 66:54–60. https://doi.org/10.1016/j.envexpbot.2008.12.012

    CAS  Article  Google Scholar 

  31. Keeping MG, Meyer JH, Sewpersad C (2013) Soil silicon amendments increase resistance of sugarcane to stalk borer Eldana saccharina Walker (Lepidoptera: Pyralidae) under field conditions. Plant Soil 363:297–318. https://doi.org/10.1007/s11104-012-1325-1

    CAS  Article  Google Scholar 

  32. Keeping MG, Miles N, Sewpersad C (2014) Silicon reduces impact of plant nitrogen in promoting stalk borer (Eldana saccharina) but not sugarcane thrips (Fulmekiola serrata) infestations in sugarcane. Front Plant Sci. https://doi.org/10.3389/fpls.2014.00289

    Article  PubMed  PubMed Central  Google Scholar 

  33. Korndörfer GH, Colombo CA, Leone PLC (2000) Termofosfato como fonte de silício para a cana-de-açúcar. STAB - Sociedade Dos Técnicos Açucareiros e Alcooleiros Do Brasil 19:34–36

    Google Scholar 

  34. Kvedaras OL, Keeping MG (2007) Silicon impedes stalk penetration by the borer Eldana saccharina in sugarcane. Entomol Exp Appl 125:103–110. https://doi.org/10.1111/j.1570-7458.2007.00604.x

    CAS  Article  Google Scholar 

  35. Kvedaras OL, Keeping MG, Goebel FR, Byrne MJ (2007) Larval performance of the pyralid borer Eldana saccharina Walker and stalk damage in sugarcane: influence of plant silicon, cultivar and feeding site. Int J Pest Manag 53:183–194. https://doi.org/10.1080/09670870601110956

    CAS  Article  Google Scholar 

  36. Kvedaras OL, Byrnet MJ, Coombes NE, Keeping MG (2009) Influence of plant silicon and sugarcane cultivar on mandibular wear in the stalk borer Eldana saccharina. Agric Entomol 11:301–306. https://doi.org/10.1111/j.1461-9563.2009.00430.x

    Article  Google Scholar 

  37. Kvedaras OL, An M, Choi YS, Gurr GM (2010) Silicon enhances natural enemy attraction and biological control through induced plant defenses. Bull Entomol Res 100:367–371. https://doi.org/10.1017/S0007485309990265

    CAS  Article  PubMed  Google Scholar 

  38. Laing MD, Gatarayiha MC, Adandonon A (2006) Silicon use for pest control in agriculture: a review. Proc S Afr Sug Technol Ass 80:278–286. https://doi.org/10.5958/j.0976-0741.35.1.002

    Article  Google Scholar 

  39. Leite CMV, Andrade LAB, Garcia JC, Anjos IA (2008) Efeitos de fontes e doses de silicato de cálcio no rendimento agrícola e na qualidade tecnológica da cana-de-açúcar, cultivar SP80-1816. Ciênc Agrotec 32:1120–1125. https://doi.org/10.1590/S1413-70542008000400013

    CAS  Article  Google Scholar 

  40. Lenteren van JC (1992) Quality control for natural enemies used in greenhouses. IOBC/WPRS Bull 16:89–92

    Google Scholar 

  41. Lenteren van JC (2009) Testes para o controle de qualidade de agentes de controle biológico comercializados. In: Bueno VHP (ed) Controle Biológico de pragas: produção massal e controle de qualidade. UFLA, pp 339–370

  42. Liu J, Zhu J, Zhang P, Han L, Reynolds OL, Zeng R, Wu J, Shao Y, You M, Gurr GM (2017) Silicon supplementation alters the composition of herbivore induced plant volatiles and enhances attraction of parasitoids to infested rice plants. Front Plant Sci. https://doi.org/10.3389/fpls.2017.01265

    Article  PubMed  PubMed Central  Google Scholar 

  43. Liu Q, Luo L, Zheng L (2018) Lignins: biosynthesis and biological functions in plants. Int J Mol Sci. https://doi.org/10.3390/ijms19020335

    Article  PubMed  PubMed Central  Google Scholar 

  44. Ma JF (2004) Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses. Soil Sci Plant Nutr 50:11–18. https://doi.org/10.1080/00380768.2004.10408447

    CAS  Article  Google Scholar 

  45. Malavolta E (1980) Elementos de nutrição mineral das plantas. Agronômica Ceres, p 251p

  46. Massey FP, Ennos R, Hartley SE (2006) Silica in grasses as a defense against insect herbivores: contrasting effects on folivores and a phloem feeder. J Anim Ecol 75:595–603. https://doi.org/10.1111/j.1365-2656.2006.01082.x

    Article  PubMed  Google Scholar 

  47. Metcalfe JR (1969) The estimation of loss caused by sugar cane moth borer. In: Williams JR, Metcalfe JR, Mungomery RW, Mathis R (eds) Pests of Sugar Cane. Elsevier, pp 61–79

  48. Meyer JH, Keeping MG (2005) Impact of silicon in alleviating biotic stress in sugarcane in South Africa. Proc ISSCT 25:96–103

    Google Scholar 

  49. Mitani M, Ma JF, Iwashita T (2005) Identification of the silicon form in xylem sap of rice (Oryza sativa L.). Plant Cell Physiol 46:279–283. https://doi.org/10.1093/pcp/pci018

    CAS  Article  PubMed  Google Scholar 

  50. Mitchell C, Brennan RM, Graham J, Karley AJ (2016) Plant defense against herbivourous pests: exploiting resistance and tolerance traits for sustainable crop protection. Front Plant Sci. https://doi.org/10.3389/fpls.2016.01132

    Article  PubMed  PubMed Central  Google Scholar 

  51. Moraes JC, Goussain MM, Basagli MAB, Carvalho GA, Ecole CC, Sampaio MV (2004) Silicon influence on the tritrophic interaction: wheat plants, the greenbug Schizaphis graminum (Rondani) (Hemiptera: Aphididae), and its natural enemies, Chrysoperla externa (Hagen) (Neuroptera: Chrysopidae) and Aphidius colemani Viereck (Hymenoptera: Aphidiidae). Neotrop Entomol 33:619–624. https://doi.org/10.1590/S1519-566X2004000500012

    Article  Google Scholar 

  52. Moraes JC, Goussain MM, Carvalho GA, Costa RR (2005) Feeding non-preference of the corn leaf aphid Rhopalosiphum maidis (Fitch, 1856) (Hemiptera: Aphididae) to corn plants (Zea mays L.) treated with silicon. Ciênc Agrotec 29:761–766. https://doi.org/10.1590/S1413-70542005000400007

    CAS  Article  Google Scholar 

  53. Nascimento AM, Assis FA, Moraes JC, Souza BHS (2018) Silicon application promotes rice growth and negatively affects development of Spodoptera frugiperda (J. E. Smith). J Appl Entomol 142:241–249. https://doi.org/10.1111/jen.12461

    CAS  Article  Google Scholar 

  54. Nikpay A (2016) Improving biological control of stalk borers in sugarcane by applying silicon as a soil amendment. J Plant Prot Res 56:394–401. https://doi.org/10.1515/jppr-2016-0058

    CAS  Article  Google Scholar 

  55. Nikpay A, Laane HM (2020) Foliar amendment of silicic acid on population of yellow mite, Oligonychus sacchari (Acari: Tetranychidae) and its predatory beetle, Stethorus gilvifrons (Col.: Coccinellidae) on two sugarcane commercial varieties. Persian J Acarol 9:57–66. https://doi.org/10.22073/pja.v9i1.55513

    Article  Google Scholar 

  56. Nikpay A, Soleyman-Nejadian E, Goldasteh S, Farazmand H (2015) Response of sugarcane and sugarcane stalk borers Sesamia spp. (Lepidoptera: Noctuidae) to calcium silicate fertilization. Neotrop Entomol 44:498–503. https://doi.org/10.1007/s13744-015-0298-1

    CAS  Article  PubMed  Google Scholar 

  57. Nikpay A, Nejadian ES, Goldasteh S, Farazmand H (2017) Efficacy of silicon formulations on sugarcane stalk borers, quality characteristics and parasitism rate on five commercial varieties. Proc Natl Acad Sci 87:289–297. https://doi.org/10.1007/s40011-015-0596-8

    CAS  Article  Google Scholar 

  58. Parra JRP (2014) Biological control in Brazil: an overview. Sci Agric 71:345–355. https://doi.org/10.1590/0103-9016-2014-0167

    Article  Google Scholar 

  59. Pereira HS, Korndörfer GH (2016) Análise de silício no solo, planta e fertilizante. Boletim Técnico N 2:50f

    Google Scholar 

  60. Pinto AS (2019) Sucesso de controle biológico de pragas da cana-de-açúcar. Inf Agropec 305:57–65

    Google Scholar 

  61. Programa Cana (2015) Programa cana. http://www.oricana.com.br/novosite/controlepragas/2012-05-22-09-43-programa-cana_abril-2012pdf.pdf

  62. Reynolds OL, Padula MP, Zeng R, Gurr GM (2016) Silicon: potential to promote direct and indirect effects on plant defense against arthropod pests in agriculture. Front Plant Sci 7:1–13. https://doi.org/10.3389/fpls.2016.00744

    Article  Google Scholar 

  63. Rodrigues FA, Jurick WM, Datnoff LE, Jones JB, Rollins JA (2005) Silicon influences cytological and molecular events in compatible and incompatible rice-Magnaporthe grisea interactions. Physiol Mol Plant Pathol 66(4):144–159. https://doi.org/10.1016/j.pmpp.2005.06.002

    CAS  Article  Google Scholar 

  64. Sampaio MV (2009) Controle biológico de pragas com uso de parasitóides. Inf Agropec 30:41–46

    Google Scholar 

  65. Sampaio MV, Franco GM, Lima DT, Oliveira ARC, Silva PF, Santos ALZ, Resende AVM, Santos FAA, Girão LVC (2020) Plant silicon amendment does not reduce population growth of Schizaphis graminum or host quality for the parasitoid Lysiphlebus testaceipes. Neotrop Entomol. https://doi.org/10.1007/s13744-020-00775-w

    Article  PubMed  Google Scholar 

  66. Savant NK, Korndörfer GH, Datnoff LE, Snyder GH (1999) Silicon nutrition and sugarcane production: a review. J Plant Nutr 22:1853–1903. https://doi.org/10.1080/01904169909365761

    CAS  Article  Google Scholar 

  67. Schaller J, Brackhage C, Dudel EG (2012) Silicon availability changes structural carbon ratio and phenol content of grasses. Environ Exp Bot 77:283–287. https://doi.org/10.1016/j.envexpbot.2011.12.009

    CAS  Article  Google Scholar 

  68. Schoelynck J, Bal K, Backx H, Okruszko T, Meire P, Struyf E (2010) Silica uptake in aquatic and wetland macrophytes: a strategic choice between silica, lignin and cellulose? New Phytol 186:385–391. https://doi.org/10.1111/j.1469-8137.2009.03176.x

    CAS  Article  PubMed  Google Scholar 

  69. Schuetz M, Benske A, Smith RA, Watanabe Y, Tobimatsu Y, Ralph J, Demura T, Ellis B, Samuels AL (2014) Laccases direct lignification in the discrete secondary cell wall domains of protoxylem. Plant Physiol 166:798–807. https://doi.org/10.1104/pp.114.245597

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  70. Schurt DA, Rodrigues FA, Colodette JL, Carré-Missio V (2013) Efeito do silício nas concentrações de lignina e de açúcares em bainhas de folhas de arroz infectadas por Rhizoctonia solani. Bragantia 72:360–366. https://doi.org/10.1590/brag.2013.043

    Article  Google Scholar 

  71. Sétamou M, Jiang N, Schulthess F (2005) Effect of the host plant on the survivorship of parasitized Chilo partellus Swinhoe (Lepidoptera: Crambidae) larvae and performance of its larval parasitoid Cotesia flavipes Cameron (Hymenoptera: Braconidae). Biol Control 32:183–190. https://doi.org/10.1016/j.biocontrol.2004.09.008

    Article  Google Scholar 

  72. Stout ME (2013) Reevaluating the conceptual framework for applied research on host-plant resistance. Insect Sci 20:263–272. https://doi.org/10.1111/1744-7917.12011

    Article  PubMed  Google Scholar 

  73. Taiz L, Zeiger E, Moller IM, Murphy A (2017) Fisiologia e Desenvolvimento Vegetal. Artmed

  74. Trevisan M, Bortoli SA, Vacari AM, Laurentis VL, Ramalho DG (2016) Quality of the exotic parasitoid Cotesia flavipes (Hymenoptera: Braconidae) does not show deleterious effects after inbreeding for 10 generations. PLoS ONE 11(8):e0160898. https://doi.org/10.1371/journal.pone.0160898

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  75. Van Soest PJ (1967) Development of a comprehensive system of feed analysis and its applications to forage. J Anim Sci 26:119–128. https://doi.org/10.2527/jas1967.261119x

    Article  Google Scholar 

  76. Veiga ACP, Vacari AM, Volpe HXL, Laurentis VL, Bortoli AS (2013) Quality control of Cotesia flavipes (Cameron) (Hymenoptera: Braconidae) from different Brazilian bio-factories. Biocontrol Sci Technol 23:665–673. https://doi.org/10.1080/09583157.2013.790932

    Article  Google Scholar 

  77. Vilela M, Moraes JC, Alves E, Santos-Cividanes TM, Santos FA (2014) Induced resistance to Diatraea saccharalis (Lepidoptera: Crambidae) via silicon application in sugarcane. Rev Colomb Entomol 40:44–48

    Google Scholar 

  78. White WH, White PM (2014) Sugarcane borer resistance in sugarcane as affected by silicon applications in potting medium. J Am Soc Sugar Cane Technol 33:38–54

    Google Scholar 

  79. White WH, Viator RP, Dufrene EO, Dalley CD, Richard EP Jr, Tew TL (2008) Re-evaluation of sugarcane borer (Lepidoptera: Crambidae) bioeconomics in Louisiana. Crop Prot 27:1256–1261. https://doi.org/10.1016/j.cropro.2008.03.011

    Article  Google Scholar 

  80. Zebelo AS, Maffei ME (2015) Role of early signalling events in plant–insect interactions. J Exp Bot 66:435–448. https://doi.org/10.1093/jxb/eru480

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We are grateful to the “Fundação de Amparo à Pesquisa do Estado de São Paulo” (FAPESP) for financial support. The second author thanks the “Conselho Nacional de Desenvolvimento Científico e Tecnológico” (CNPq) for the scholarship (Grant 301735/2012-3). We are grateful to the Biological Institute (IB) and the Agronomy Institute of Campinas (IAC) – Cana Center, Ribeirão Preto, São Paulo, for assistance in the field and the laboratory, and to Biocontrol Company, Sertãozinho, São Paulo, Brazil, for providing the parasitoid Cotesia flavipes. We would also like to thank the anonymous reviewers for the suggestions that collaborated to improve the manuscript.

Funding

The “Fundação de Amparo à Pesquisa do Estado de São Paulo” (FAPESP) (Grant 2010/15111–4).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Terezinha M. Santos-Cividanes.

Ethics declarations

Conflict of interest

The authors declare that no conflict of interest exists.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Ivan Hiltpold and Antonio Biondi.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Santos-Cividanes, T.M., Cividanes, F.J., Garcia, J.C. et al. Silicon induces resistance to Diatraea saccharalis in sugarcane and it is compatible with the biological control agent Cotesia flavipes. J Pest Sci (2021). https://doi.org/10.1007/s10340-021-01429-5

Download citation

Keywords

  • Saccharum sp.
  • Calcium silicate
  • Biological control
  • Parasitoid