Skip to main content
Log in

Transcriptomic and metabolomic reprogramming in cotton after Apolygus lucorum feeding implicated in enhancing recruitment of the parasitoid Peristenus spretus

  • Original Paper
  • Published:
Journal of Pest Science Aims and scope Submit manuscript

Abstract

Different types of insect feeding can activate distinct plant resistance mechanisms and trigger the generation of specific volatile compounds. Transcriptomic changes and the genomic basis underlying plant defense in response to chewing herbivores or phloem-feeding insects have been relatively well investigated, while better insight into molecular mechanisms underlying the plant defense response, in particular, volatile emissions triggered by sap-feeding insects such as the green plant bug Apolygus lucorum is needed. Here, we monitored transcriptomic and volatile metabolomic changes in cotton over time during A. lucorum infestation. RNA-seq analysis showed that 1614 transcripts were differentially expressed (log2|Ratio| ≥ 1; q ≤ 0.05) in cotton leaves infested by A. lucorum. All differentially expressed genes (DEGs) in jasmonic acid (JA; 48 genes) and salicylic acid (SA; 5 genes) pathways were upregulated, highlighting a central role of JA in A. lucorum-induced signaling without attenuating the SA pathway. Moreover, all DEGs (30 genes) involved in herbivore-induced volatile biosynthesis were upregulated. Consistently, A. lucorum-induced cotton volatile blends and synthetic methyl salicylate significantly attracted the parasitoid Peristenus spretus. The present data indicated that cotton plants after A. lucorum infestation undergo rapid, extensive transcriptome reprogramming mediated by complex signaling networks in which the JA and SA pathways act synergistically, leading to a specific volatile profile involved in an indirect plant defense.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adebesin F, Widhalm JR, Boachon B et al (2017) Emission of volatile organic compounds from petunia flowers is facilitated by an ABC transporter. Science 356:1386–1388

    Article  CAS  PubMed  Google Scholar 

  • Arena GD, Ramos-González PL, Rogério L, Ribeiro-Alves M, Casteel CL, Freitas-Astúa J, Machado MA (2018) Making a better home: modulation of plant defensive response by Brevipalpus mites. Front Plant Sci 9:1147

    Article  PubMed  PubMed Central  Google Scholar 

  • Artico S, Ribeiro-Alves M, Oliveira-Neto OB et al (2014) Transcriptome analysis of Gossypium hirsutum flower buds infested by cotton boll weevil (Anthonomus grandis) larvae. BMC Genom 15:854

    Article  Google Scholar 

  • Ayubov MS, Abdurakhmonov IY (2018) The cotton-insect interactive transcriptome-molecular elements involved in plant-insect interactions. The biology of plant-insect interactions. CRC Press, Boca Raton, pp 62–73

    Chapter  Google Scholar 

  • Backus EA, Cline AR, Ellerseick MR, Serrano MS (2007) Lygus hesperus (Hemiptera: Miridae) feeding on cotton: new methods and parameters for analysis of nonsequential electrical penetration graph data. Ann Entomol Soc Am 100:296–310

    Article  Google Scholar 

  • Baek YS, Goodrich LV, Brown PJ, James BT, Moose SP, Lambert KN, Riechers DE (2019) Transcriptome profiling and genome-wide association studies reveal GSTs and other defense genes involved in multiple signaling pathways induced by herbicide safener in grain sorghum. Front Plant Sci 10:192

    Article  PubMed  PubMed Central  Google Scholar 

  • Clavijo McCormick A (2016) Can plant-natural enemy communication withstand disruption by biotic and abiotic factors? Ecol Evol 6(23):8569–8582

    Article  PubMed  PubMed Central  Google Scholar 

  • D’Auria JC, Pichersky E, Schaub A, Hansel A, Gershenzon J (2007) Characterization of a BAHD acyltransferase responsible for producing the green leaf volatile (Z)-3-hexen-1-yl acetate in Arabidopsis thaliana. Plant J 49:194–207

    Article  CAS  PubMed  Google Scholar 

  • Davila Olivas NH, Kruijer W, Gort G, Wijnen CL, van Loon JJ, Dicke M (2017) Genome-wide association analysis reveals distinct genetic architectures for single and combined stress responses in Arabidopsis thaliana. New Phytol 213:838–851

    Article  CAS  PubMed  Google Scholar 

  • Degenhardt D, Greene J, Khalilian A, Reeves R (2011) Volatile emissions from developing cotton bolls in response to hemipteran feeding damage. J Entomol Sci 46:177

    Article  CAS  Google Scholar 

  • Dhandapani S, Jin J, Sridhar V, Chua N-H, Jang I-C (2019) CYP79D73 participates in biosynthesis of floral scent compound 2-phenylethanol in Plumeria rubra. Plant Physiol 180:171–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dicke M, Van Beek T, Posthumus MV, Dom NB, Van Bokhoven H, De Groot A (1990) Isolation and identification of volatile kairomone that affects acarine predatorprey interactions: Involvement of host plant in its production. J Chem Ecol 16:381–396

    Article  CAS  PubMed  Google Scholar 

  • Dubey NK, Goel R, Ranjan A et al (2013) Comparative transcriptome analysis of Gossypium hirsutum L. in response to sap sucking insects: aphid and whitefly. BMC Genom 14:241

    Article  CAS  Google Scholar 

  • Erb M, Reymond P (2019) Molecular interactions between plants and insect herbivores. Annu Rev Plant Biol 70:527–557

    Article  CAS  PubMed  Google Scholar 

  • Ernst J, Bar-Joseph Z (2006) STEM: a tool for the analysis of short time series gene expression data. BMC Bioinform 7:191

    Article  CAS  Google Scholar 

  • Filgueiras CC, Martins AD, Pereira RV, Willett DS (2019) The ecology of salicylic acid signaling: primary, secondary and tertiary effects with applications in agriculture. Int J Mol Sci 20:5851

    Article  CAS  PubMed Central  Google Scholar 

  • Groux R, Hilfiker O, Gouhier-Darimont C, Peñaflor MFGV, Erb M, Reymond P (2014) Role of methyl salicylate on oviposition deterrence in Arabidopsis thaliana. J Chem Ecol 40:754–759

    Article  CAS  PubMed  Google Scholar 

  • Guo J, Qi J, He K et al (2018a) The Asian corn borer Ostrinia furnacalis feeding increases the direct and indirect defence of mid-whorl stage commercial maize in the field. Plant Biotechnol J 17(1):88–102

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guo YF, Zhang YL, Shan W et al (2018b) Identification of two transcriptional activators mabzip4/5 in controlling aroma biosynthetic genes during banana ripening. J Agr Food Chem 66:6142–6150

    Article  CAS  Google Scholar 

  • Hegde M, Oliveira JN, Da Costa JG et al (2011) Identification of semiochemicals released by cotton, Gossypium hirsutum, upon infestation by the cotton aphid, Aphis gossypii. J Chem Ecol 37:741–750

    Article  CAS  PubMed  Google Scholar 

  • Hong GJ, Xue XY, Mao YB, Wang LJ, Chen XY (2012) Arabidopsis MYC2 interacts with DELLA proteins in regulating sesquiterpene synthase gene expression. Plant Cell 24:2635–2648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang X, Xiao Y, Köllner TG et al (2013) Identification and characterization of (E)-β-caryophyllene synthase and α/β-pinene synthase potentially involved in constitutive and herbivore-induced terpene formation in cotton. Plant Physiol Biochem 73:302–308

    Article  CAS  PubMed  Google Scholar 

  • Huang XZ, Chen JY, Xiao HJ et al (2015) Dynamic transcriptome analysis and volatile profiling of Gossypium hirsutum in response to the cotton bollworm Helicoverpa armigera. Sci Rep 5:11867

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang XZ, Xiao YT, Köllner TG et al (2018) The terpene synthase gene family in Gossypium hirsutum harbors a linalool synthase GhTPS12 implicated in direct defence responses against herbivores. Plant Cell Environ 41:261–274

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Kanakachari M, Gurusamy D et al (2016) Genome-wide transcriptomic and proteomic analyses of bollworm-infested developing cotton bolls revealed the genes and pathways involved in the insect pest defence mechanism. Plant Biotechnol J 14:1438–1455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–1760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li S, Wang H, Li F et al (2015) The maize transcription factor EREB58 mediates the jasmonate-induced production of sesquiterpene volatiles. Plant J 84:296–308

    Article  CAS  PubMed  Google Scholar 

  • Li J, Zhu L, Hull JJ, Liang S, Daniell H, Jin S, Zhang X (2016) Transcriptome analysis reveals a comprehensive insect resistance response mechanism in cotton to infestation by the phloem feeding insect Bemisia tabaci (whitefly). Plant Biotechnol J 14:1956–1975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Xu Y, Shen S, Yin X, Klee H, Zhang B, Chen K (2017) Transcription factor CitERF71 activates the terpene synthase gene CitTPS16 involved in the synthesis of E-geraniol in sweet orange fruit. J Exp Bot 68:4929–4938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin J, Mazarei M, Zhao N et al (2013) Overexpression of a soybean salicylic acid methyltransferase gene confers resistance to soybean cyst nematode. Plant Biotechnol J 11:1135–1145

    Article  CAS  PubMed  Google Scholar 

  • Lin Y, Lin S, Akutse KS, Hussain M, Wang L (2016) Diaphorina citri induces Huanglongbing-infected citrus plant volatiles to repel and reduce the performance of Propylaea japonica. Front Plant Sci 7:1969

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu Q, Wang X, Tzin V, Romeis J, Peng Y, Li Y (2016) Combined transcriptome and metabolome analyses to understand the dynamic responses of rice plants to attack by the rice stem borer Chilo suppressalis (Lepidoptera: Crambidae). BMC Plant Biol 16:259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu D, Huang X, Jing W et al (2018) Identification and functional analysis of two P450 enzymes of Gossypium hirsutum involved in DMNT and TMTT biosynthesis. Plant Biotechnol J 16:581–590

    Article  CAS  PubMed  Google Scholar 

  • Llandres AL, Almohamad R, Brévault T, Renou A, Téréta I, Jean J, Goebel FR (2018) Plant training for induced defense against insect pests: a promising tool for integrated pest management in cotton. Pest Manag Sci 74:2004–2012

    Article  CAS  Google Scholar 

  • Loughrin JH, Manukian A, Heath RR, Turlings TC, Tumlinson JH (1994) Diurnal cycle of emission of induced volatile terpenoids by herbivore-injured cotton plant. Proc Natl Acad Sci USA 91:11836–11840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu Y, Wu K, Jiang Y et al (2010) Mirid bug outbreaks in multiple crops correlated with wide-scale adoption of Bt cotton in China. Science 328:1151–1154

    Article  CAS  PubMed  Google Scholar 

  • Lu Y, Wu K, Guo Y (2014) Flight potential of Lygus lucorum (Meyer-Dür) (Heteroptera: Miridae). Environ Entomol 36:1007–1013

    Google Scholar 

  • Luo S, Zhang F, Wu K (2015) Effect of temperature on the reproductive biology of Peristenus spretus (Hymenoptera: Braconidae), a biological control agent of the plant bug Apolygus lucorum (Hemiptera: Miridae). Biocontrol Sci Technol 25:1410–1425

    Article  Google Scholar 

  • Manrique V, Jones W, Williams L III, Bernal J (2005) Olfactory responses of Anaphes iole (Hymenoptera: Mymaridae) to volatile signals derived from host habitats. J Insect Behav 18:89–104

    Article  Google Scholar 

  • Martel C, Zhurov V, Navarro M et al (2015) Tomato whole genome transcriptional response to Tetranychus urticae identifies divergence of spider mite-induced responses between tomato and Arabidopsis. Mol Plant Microbe Interact 28:343–361

    Article  CAS  PubMed  Google Scholar 

  • Pan H, Xiu C, Liu B, Lu Y (2019) Plant stalks as oviposition traps for Apolygus lucorum (Hemiptera: Miridae) under field conditions. Int J Pest Manage 65:79–85

    Article  Google Scholar 

  • Pollier J, De Geyter N, Moses T et al (2019) The MYB transcription factor emission of methyl anthranilate 1 stimulates emission of methyl anthranilate from Medicago truncatula hairy roots. Plant J 99(4):637–654

    Article  CAS  PubMed  Google Scholar 

  • Qi J, Sun G, Wang L et al (2016) Oral secretions from Mythimna separata insects specifically induce defence responses in maize as revealed by high-dimensional biological data. Plant Cell Environ 39:1749–1766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez-Saona C, Crafts-Brandner SJ, Williams L, Paré PW (2002) Lygus hesperus feeding and salivary gland extracts induce volatile emissions in plants. J Chem Ecol 28:1733–1747

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Saona C, Crafts-Brandner SJ, Cañas LA (2003) Volatile emissions triggered by multiple herbivore damage: beet armyworm and whitefly feeding on cotton plants. J Chem Ecol 29:2539–2550

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Saona C, Kaplan I, Braasch J, Chinnasamy D, Williams L (2011) Field responses of predaceous arthropods to methyl salicylate: a meta-analysis and case study in cranberries. Biol Control 59:294–303

    Article  CAS  Google Scholar 

  • Röse UR, Tumlinson J (2004) Volatiles released from cotton plants in response to Helicoverpa zea feeding damage on cotton flower buds. Planta 218:824–832

    Article  PubMed  CAS  Google Scholar 

  • Sarde SJ, Bouwmeester K, Venegas-Molina J, David A, Boland W, Dicke M (2019) Involvement of sweet pepper CaLOX2 in jasmonate-dependent induced defence against Western flower thrips. J Integr Plant Biol 61:1085–1098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen SL, Yin XR, Zhang B, Xie XL, Jiang Q, Grierson D, Chen KS (2016) CitAP2. 10 activation of the terpene synthase CsTPS1 is associated with the synthesis of (+)-valencene in ‘Newhall’ orange. J Exp Bot 67:4105–4115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Showmaker KC, Bednářová A, Gresham C, Hsu C-Y, Peterson DG, Krishnan N (2016) Insight into the salivary gland transcriptome of Lygus lineolaris (Palisot de Beauvois). PLoS ONE 11:e0147197

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Spyropoulou EA, Dekker HL, Steemers L et al (2017) Identification and characterization of (3Z):(2E)-hexenal isomerases from cucumber. Front Plant Sci 8:1342

    Article  PubMed  PubMed Central  Google Scholar 

  • Stam JM, Kroes A, Li Y, Gols R, van Loon JJA, Poelman EH, Dicke M (2014) Plant interactions with multiple insect herbivores: From community to genes. Ann Rev Plant Biol 65:689–713

    Article  CAS  Google Scholar 

  • Tian X, Ruan JX, Huang JQ et al (2018) Characterization of gossypol biosynthetic pathway. Proc Natl Acad Sci USA 115:e5410–e5418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turlings TCJ, Erb M (2018) Tritrophic interactions mediated by herbivore-induced plant volatiles: Mechanisms, ecological relevance, and application potential. Ann Rev Entomol 63:433–452

    Article  CAS  Google Scholar 

  • Voelckel C, Baldwin IT (2004) Herbivore-induced plant vaccination. Part II. Array-studies reveal the transience of herbivore-specific transcriptional imprints and a distinct imprint from stress combinations. Plant J 38:650–663

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Zhou JJ, Liu JT et al (2019) Integrative transcriptomic and genomic analysis of odorant binding proteins and chemosensory proteins in aphids. Insect Mol Biol 28:1–22

    Article  PubMed  CAS  Google Scholar 

  • Williams L, Rodriguez-Saona C, Castle SC, Zhu S (2008) EAG-active herbivore-induced plant volatiles modify behavioral responses and host attack by an egg parasitoid. J Chem Ecol 34:1190–1201

    Article  CAS  PubMed  Google Scholar 

  • Xie C, Mao X, Huang J et al (2011) KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Res 39(suppl 2):W316–W322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiu C, Dai W, Pan H et al (2019) Herbivore-induced plant volatiles enhance field-level parasitism of the mirid bug Apolygus lucorum. Biol Control 135:41–47

    Article  CAS  Google Scholar 

  • Xu YH, Wang JW, Wang S, Wang JY, Chen XY (2004) Characterization of GaWRKY1, a cotton transcription factor that regulates the sesquiterpene synthase gene (+)-delta-cadinene synthase-A. Plant Physiol 135:507–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu H, Zhang Y, Wu K, Gao XW, Guo YY (2008) Field-testing of synthetic herbivore-induced plant volatiles as attractants for beneficial insects. Environ Entomol 37:1410–1415

    Article  CAS  PubMed  Google Scholar 

  • Yu ZX, Li JX, Yang CQ, Hu WL, Wang LJ, Chen XY (2012) The jasmonate-responsive AP2/ERF transcription factors AaERF1 and AaERF2 positively regulate artemisinin biosynthesis in Artemisia annua L. Mol Plant 5:353–365

    Article  CAS  PubMed  Google Scholar 

  • Zhang PJ, Zheng SJ, van Loon JJ, Boland W, David A, Mumm R, Dicke M (2009) Whiteflies interfere with indirect plant defense against spider mites in Lima bean. Proc Natl Acad Sci USA 106:21202–21207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Yin X, Xiao Y et al (2018) An ETHYLENE RESPONSE FACTOR-MYB transcription complex regulates furaneol biosynthesis by activating QUINONE OXIDOREDUCTASE expression in strawberry. Plant Physiol 178:189–201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Bouwmeester HJ, Kappers IF (2020) Combined transcriptome and metabolome analysis identifies defence responses in spider mite-infested pepper (Capsicum annuum). J Exp Bot 71:330–343

    Article  CAS  PubMed  Google Scholar 

  • Zhao N, Guan J, Forouhar F, Tschaplinski TJ, Cheng ZM, Tong L, Chen F (2009) Two poplar methyl salicylate esterases display comparable biochemical properties but divergent expression patterns. Phytochemistry 70:32–39

    Article  CAS  PubMed  Google Scholar 

  • Zhou G, Wang X, Yan F, Li R, Cheng J, Lou Y (2011) Genome-wide transcriptional changes and defence-related chemical profiling of rice in response to infestation by the rice striped stem borer Chilo suppressalis. Physiol Plantarum 143:21–40

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (31701800, 31972338, 31772176, 31672038 and 31621064), the National Key Research and Development Program of China (2019YFD0300100 and 2017YFD0201900) and the Open Fund Project of State Key Laboratory for Biology of Plant Diseases and Insect Pests (SKLOF201901)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongjun Zhang.

Additional information

Communicated by Paul Becher.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, X., Kou, J., Jing, W. et al. Transcriptomic and metabolomic reprogramming in cotton after Apolygus lucorum feeding implicated in enhancing recruitment of the parasitoid Peristenus spretus. J Pest Sci 95, 249–262 (2022). https://doi.org/10.1007/s10340-021-01369-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10340-021-01369-0

Keywords

Navigation