Abstract
Managed honey bees have suffered severe seasonal losses for most of the past 30 years, while at the same time there is a growing need for food crop pollination. Parasitism by Varroa destructor plays a key role in explaining these losses as this parasite directly damages honey bees by feeding on them and by vectoring an array of viruses while doing so. Pyrethroids like tau-fluvalinate and flumethrin are among the few acaricides that may control Varroa mites in honey bee colonies. However, their intensive use has led to the evolution of resistance in many locations. Knockdown resistance (kdr-type) in Varroa destructor is associated with point mutations that change the amino acid at position 925 in the para-type voltage-gated sodium channel (VGSC) from leucine to valine, methionine or isoleucine. In order to assess the evolution of resistant mutations, we genotyped a region of the VGSC from V. destructor samples collected worldwide. Our phylogenetic analysis supports the hypothesis of independent origin for resistant alleles in Europe and the USA, and a close relation between L925M and L925I alleles. Our data also suggest that uncontrolled trading of parasitised honey bees might be an important route for spreading resistant alleles overseas. The substitution M918L, associated with pyrethroid resistance in other species, is reported here for the first time in V. destructor, in conjunction with L925V in mites from Spain. The implications of these evolutionary and dispersal processes for Varroa mite management are discussed.
This is a preview of subscription content, access via your institution.



Data availability
The datasets generated and analysed during the current study are available within the article and its supplementary materials, as well as from the corresponding author on reasonable request.
References
Alissandrakis E, Ilias A, Tsagkarakou A (2017) Pyrethroid target site resistance in Greek populations of the honey bee parasite Varroa destructor (Acari: Varroidae). J Apicult Res 56:625–630. https://doi.org/10.1080/00218839.2017.1368822
Alon M, Benting J, Lueke B, Ponge T, Alon F, Morin S (2006) Multiple origins of pyrethroid resistance in sympatric biotypes of Bemisia tabaci (Hemiptera: Aleyrodidae). Insect Biochem Mol Biol 36:71–79. https://doi.org/10.1016/j.ibmb.2005.10.007
Annoscia D, Del Piccolo F, Nazzi F (2012) How does the mite Varroa destructor kill the honeybee Apis mellifera? Alteration of cuticular hydrocarbons and water loss in infested honeybees. J Insect Physiol 58:1548–1555. https://doi.org/10.1016/j.jinsphys.2012.09.008
Anstead JA, Williamson MS, Denholm I (2005) Evidence for multiple origins of identical insecticide resistance mutations in the aphid Myzus persicae. Insect Biochem Mol Biol 35:249–256. https://doi.org/10.1016/j.ibmb.2004.12.004
Bak B, Wilde J, Siuda M (2012) Characteristics of north-eastern population of Varroa destructor resistant to synthetic pyrethroids. Med Weter 68:603–606
Beaurepaire AL, Moro A, Mondet F, Le Conte Y, Neumann P, Locke B (2019) Population genetics of ectoparasitic mites suggest arms race with honeybee hosts. Sci Reps 9:11355. https://doi.org/10.1038/s41598-019-47801-5
Benavent-Albarracín L, Alonso M, Catalán J, Urbaneja A, Davies TGE, Williamson MS, González-Cabrera J (2020) Mutations in the voltage-gated sodium channel gene associated with deltamethrin resistance in commercially sourced Phytoseiulus persimilis. Insect Mol Biol 29:373–380. https://doi.org/10.1111/imb.12642
BOC (2001) Boletín Oficial de Canarias-BOC-2001-049-603. http://www.gobiernodecanarias.org/boc/2001/049/003.html
BOC (2014) Boletín Oficial de Canarias-BOC-A-2014-086-1889. http://www.gobiernodecanarias.org/boc/2014/086/001.html
Bouckaert RR, Drummond AJ (2017) bModelTest: Bayesian phylogenetic site model averaging and model comparison. BMC Evol Biol 17:42. https://doi.org/10.1186/s12862-017-0890-6
Bouckaert RR et al (2019) BEAST 2.5: an advanced software platform for Bayesian evolutionary analysis. PLOS Comput Biol 15:e1006650. https://doi.org/10.1371/journal.pcbi.1006650
Burton MJ, Mellor IR, Duce IR, Davies TGE, Field LM, Williamson MS (2011) Differential resistance of insect sodium channels with kdr mutations to deltamethrin, permethrin and DDT. Insect Biochem Mol Biol 41:723–732. https://doi.org/10.1016/j.ibmb.2011.05.004
Calatayud-Vernich P, Calatayud F, Simó E, Picó Y (2017) Occurrence of pesticide residues in Spanish beeswax. Sci Total Environ 605–606:745–754. https://doi.org/10.1016/j.scitotenv.2017.06.174
Calatayud-Vernich P, Calatayud F, Simó E, Picó Y (2018) Pesticide residues in honey bees, pollen and beeswax: assessing beehive exposure. Environ Pollut 241:106–114. https://doi.org/10.1016/j.envpol.2018.05.062
Capriotti N, Mougabure-Cueto G, Rivera-Pomar R, Ons S (2014) L925I mutation in the para-type sodium channel is associated with pyrethroid resistance in Triatoma infestans from the Gran Chaco region. PLoS Negl Trop Dis 8:e2659. https://doi.org/10.1371/journal.pntd.0002659
Carletto J, Martin T, Vanlerberghe-Masutti F, Brévault T (2010) Insecticide resistance traits differ among and within host races in Aphis gossypii. Pest Manag Sci 66:301–307. https://doi.org/10.1002/ps.1874
Chen X et al (2017) Both point mutations and low expression levels of the nicotinic acetylcholine receptor β1 subunit are associated with imidacloprid resistance in an Aphis gossypii (Glover) population from a Bt cotton field in China. Pestic Biochem Physiol 141:1–8. https://doi.org/10.1016/j.pestbp.2016.11.004
Cifuentes D, Chynoweth R, Bielza P (2011) Genetic study of Mediterranean and South American populations of tomato leafminer Tuta absoluta (Povolny, 1994) (Lepidoptera: Gelechiidae) using ribosomal and mitochondrial markers. Pest Manag Sci 67:1155–1162. https://doi.org/10.1002/ps.2166
Cornman RS et al (2010) Genomic survey of the ectoparasitic mite Varroa destructor, a major pest of the honey bee Apis mellifera. BMC Genom 11:602. https://doi.org/10.1186/1471-2164-11-602
De la Rúa P, Galián J, Serrano J, Moritz RF (2001) Genetic structure and distinctness of Apis mellifera L. populations from the Canary Islands. Mol Ecol 10:1733–1742. https://doi.org/10.1046/j.1365-294x.2001.01303.x
De la Rúa P, Jaffé R, Dall’Olio R, Muñoz I, Serrano J (2009) Biodiversity, conservation and current threats to European honeybees. Apidologie 40:263–284. https://doi.org/10.1051/apido/2009027
De la Rúa P, Serrano J, Galián J (1998) Mitochondrial DNA variability in the Canary Islands honeybees (Apis mellifera L.). Mol Ecol 7:1543–1547. https://doi.org/10.1046/j.1365-294x.1998.00468.x
Dong K et al (2014) Molecular biology of insect sodium channels and pyrethroid resistance. Insect Biochem Mol Biol 50:1–17. https://doi.org/10.1016/j.ibmb.2014.03.012
Elzen PJ, Eischen FA, Baxter JR, Elzen GW, Wilson WT (1999) Detection of resistance in US Varroa jacobsoni Oud. (Mesostigmata: Varroidae) to the acaricide fluvalinate. Apidologie 30:13–17
Evans JD et al (2013) Standard methods for molecular research in Apis mellifera. J Apic Res 52:1–54. https://doi.org/10.3896/IBRA.1.52.4.11
Farjamfar M, Saboori A, González-Cabrera J, Hernández Rodríguez CS (2018) Genetic variability and pyrethroid susceptibility of the parasitic honey bee mite Varroa destructor (Acari: Varroidae) in Iran. Exp Appl Acarol 76:139–148. https://doi.org/10.1007/s10493-018-0296-1
Field LM, Emyr Davies TG, O’Reilly AO, Williamson MS, Wallace BA (2017) Voltage-gated sodium channels as targets for pyrethroid insecticides. Eur Biophys J 46:675–679. https://doi.org/10.1007/s00249-016-1195-1
Fontaine S, Caddoux L, Brazier C, Bertho C, Bertolla P, Micoud A, Roy L (2011) Uncommon associations in target resistance among French populations of Myzus persicae from oilseed rape crops. Pest Manag Sci 67:881–885. https://doi.org/10.1002/ps.2224
Foster SP, Young S, Williamson MS, Duce I, Denholm I, Devine GJ (2003) Analogous pleiotropic effects of insecticide resistance genotypes in peach–potato aphids and houseflies. Heredity 91:98–106. https://doi.org/10.1038/sj.hdy.6800285
Gauthier N, Clouet C, Perrakis A, Kapantaidaki D, Peterschmitt M, Tsagkarakou A (2014) Genetic structure of Bemisia tabaci Med populations from home-range countries, inferred by nuclear and cytoplasmic markers: impact on the distribution of the insecticide resistance genes. Pest Manag Sci 70:1477–1491. https://doi.org/10.1002/ps.3733
González-Cabrera J et al (2018) A single mutation is driving resistance to pyrethroids in European populations of the parasitic mite, Varroa destructor. J Pest Sci 91:1137–1144. https://doi.org/10.1007/s10340-018-0968-y
González-Cabrera J, Davies TGE, Field LM, Kennedy PJ, Williamson MS (2013) An amino acid substitution (L925V) associated with resistance to pyrethroids in Varroa destructor. PLoS ONE 8:e82941. https://doi.org/10.1371/journal.pone.0082941
González-Cabrera J et al (2016) Novel mutations in the voltage-gated sodium channel of pyrethroid-resistant Varroa destructor populations from the Southeastern USA. PLoS ONE 11:e0155332. https://doi.org/10.1371/journal.pone.0155332
Haddi K et al (2012) Identification of mutations associated with pyrethroid resistance in the voltage-gated sodium channel of the tomato leaf miner (Tuta absoluta). Insect Biochem Mol Biol 42:506–513. https://doi.org/10.1016/j.ibmb.2012.03.008
Hubert J, Nesvorna M, Kamler M, Kopecky J, Tyl J, Titera D, Stara J (2014) Point mutations in the sodium channel gene conferring tau-fluvalinate resistance in Varroa destructor. Pest Manag Sci 70:889–894. https://doi.org/10.1002/ps.3679
Ilias A, Vontas J, Tsagkarakou A (2014) Global distribution and origin of target site insecticide resistance mutations in Tetranychus urticae. Insect Biochem Mol Biol 48:17–28. https://doi.org/10.1016/j.ibmb.2014.02.006
Jouraku A et al (2019) T929I and K1774N mutation pair and M918L single mutation identified in the voltage-gated sodium channel gene of pyrethroid-resistant Thrips tabaci (Thysanoptera: Thripidae) in Japan. Pestic Biochem Physiol 158:77–87. https://doi.org/10.1016/j.pestbp.2019.04.012
Kaleta C, Schäuble S, Rinas U, Schuster S (2013) Metabolic costs of amino acid and protein production in Escherichia coli. Biotechnol J 8:1105–1114. https://doi.org/10.1002/biot.201200267
Kapantaidaki DE et al (2018) Insecticide resistance in Trialeurodes vaporariorum populations and novel diagnostics for kdr mutations. Pest Manag Sci 74:59–69. https://doi.org/10.1002/ps.4674
Karatolos N, Gorman K, Williamson MS, Denholm I (2012) Mutations in the sodium channel associated with pyrethroid resistance in the greenhouse whitefly, Trialeurodes vaporariorum. Pest Manag Sci 68:834–838. https://doi.org/10.1002/ps.2334
Katsavou E et al (2020) Identification and geographical distribution of pyrethroid resistance mutations in the poultry red mite Dermanyssus gallinae. Pest Manag Sci 76:125–133. https://doi.org/10.1002/ps.5582
Kearse M et al (2012) Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647–1649. https://doi.org/10.1093/bioinformatics/bts199
Kelomey AE, Paraiso A, Sina H, Legout H, Garnery L, Baba-Moussa L (2017) Genetic characterization of the honeybee ectoparasitic mite Varroa destructor from Benin (West Africa) using mitochondrial and microsatellite markers. Exp Appl Acarol 72:61–67. https://doi.org/10.1007/s10493-017-0141-y
Kim W et al (2009) A geographical polymorphism in a voltage-gated sodium channel gene in the mite, Varroa destructor, from Korea. Korean J Apic 24:159–165
Kliot A, Ghanim M (2012) Fitness costs associated with insecticide resistance. Pest Manag Sci 68:1431–1437. https://doi.org/10.1002/ps.3395
Lee SH et al (2003) Sodium channel mutations associated with knockdown resistance in the human head louse, Pediculus capitis (De Geer). Pestic Biochem Physiol 75:79–91. https://doi.org/10.1016/S0048-3575(03)00018-X
Letunic I, Bork P (2019) Interactive tree of life (iTOL) v4: recent updates and new developments. Nucleic Acids Res 47:W256–W259. https://doi.org/10.1093/nar/gkz239
Lin Z et al (2018) Reproduction of parasitic mites Varroa destructor in original and new honeybee hosts. Ecol Evol 8:2135–2145. https://doi.org/10.1002/ece3.3802
Major KM, Weston DP, Lydy MJ, Wellborn GA, Poynton HC (2018) Unintentional exposure to terrestrial pesticides drives widespread and predictable evolution of resistance in freshwater crustaceans. Evol Appl 11:748–761. https://doi.org/10.1111/eva.12584
Milani N, Vedova GD (2002) Decline in the proportion of mites resistant to fluvalinate in a population of Varroa destructor not treated with pyrethroids. Apidologie 33:417–422. https://doi.org/10.1051/apido:2002028
Millán-Leiva A, Marín Ó, Christmon K, vanEngelsdorp D, González-Cabrera J (2020) Mutations associated with pyrethroid resistance in Varroa mites, a parasite of honey bees, are widespread across the USA. bioRxiv. https://doi.org/10.1101/2020.11.27.401927
Miozes-Koch R, Slabezki Y, Efrat H, Kalev H, Kamer Y, Yakobson DA (2000) First detection in Israel of fluvalinate resistance in the varroa mite using bioassay and biochemical methods. Exp Appl Acarol 24:35–43. https://doi.org/10.1023/a:1006379114942
Morgan JAT, Corley SW, Jackson LA, Lew-Tabor AE, Moolhuijzen PM, Jonsson NN (2009) Identification of a mutation in the para-sodium channel gene of the cattle tick Rhipicephalus (Boophilus) microplus associated with resistance to synthetic pyrethroid acaricides. Int J Parasitol 39:775–779. https://doi.org/10.1016/j.ijpara.2008.12.006
Morin S, Williamson MS, Goodson SJ, Brown JK, Tabashnik BE, Dennehy TJ (2002) Mutations in the Bemisia tabaci para sodium channel gene associated with resistance to a pyrethroid plus organophosphate mixture. Insect Biochem Mol Biol 32:1781–1791
Muñoz I, Cepero A, Pinto MA, Martín-Hernández R, Higes M, De la Rúa P (2014) Presence of Nosema ceranae associated with honeybee queen introductions. Infect Genet Evol J Mol Epidemiol Evolution Genet Infect Dis 23:161–168. https://doi.org/10.1016/j.meegid.2014.02.008
Muñoz I, Garrido-Bailón E, Martín-Hernández R, Meana A, Higes M, De la Rúa P (2008) Genetic profile of Varroa destructor infesting Apis mellifera iberiensis colonies. J Apic Res 47:310–313. https://doi.org/10.1080/00218839.2008.11101480
Muñoz I, Pinto MA, De la Rúa P (2013) Temporal changes in mitochondrial diversity highlights contrasting population events in Macaronesian honey bees. Apidologie 44:295–305. https://doi.org/10.1007/s13592-012-0179-0
Navajas M, Anderson DL, de Guzman LI, Huang ZY, Clement J, Zhou T, Le Conte Y (2010) New Asian types of Varroa destructor: a potential new threat for world apiculture. Apidologie 41:181–193. https://doi.org/10.1051/apido/2009068
O’Reilly AO, Khambay BPS, Williamson MS, Field LM, Wallace BA, Davies TGE (2006) Modelling insecticide-binding sites in the voltage-gated sodium channel. Biochem J 396:255–263. https://doi.org/10.1042/bj20051925
O’Reilly AO, Williamson MS, González-Cabrera J, Turberg A, Field LM, Wallace BA, Davies TGE (2014) Predictive 3D modelling of the interactions of pyrethroids with the voltage-gated sodium channels of ticks and mites. Pest Manag Sci 70:369–377. https://doi.org/10.1002/ps.3561
Page P et al (2016) Social apoptosis in honey bee superorganisms. Sci Rep 6:27210. https://doi.org/10.1038/srep27210
Panini M, Dradi D, Marani G, Butturini A, Mazzoni E (2014) Detecting the presence of target-site resistance to neonicotinoids and pyrethroids in Italian populations of Myzus persicae. Pest Manag Sci 70:931–938. https://doi.org/10.1002/ps.3630
Panini M, Reguzzi MC, Chiesa O, Cominelli F, Lupi D, Moores G, Mazzoni E (2019) Pyrethroid resistance in Italian populations of the mite Varroa destructor: a focus on the Lombardy region. Bull Insectol 72:227–232
Peng Y-S, Fang Y, Xu S, Ge L (1987) The resistance mechanism of the Asian honey bee, Apis cerana Fabr., to an ectoparasitic mite, Varroa jacobsoni Oudemans. J Invertebr Pathol 49:54–60. https://doi.org/10.1016/0022-2011(87)90125-X
Pinto J et al (2007) Multiple origins of knockdown resistance mutations in the Afrotropical mosquito vector Anopheles gambiae. PLoS ONE 2:e1243. https://doi.org/10.1371/journal.pone.0001243
Rambaut A, Drummond AJ, Xie D, Baele G, Suchard MA (2018) Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst Biol 67:901–904. https://doi.org/10.1093/sysbio/syy032
Ramsey SD et al (2019) Varroa destructor feeds primarily on honey bee fat body tissue and not hemolymph. Proc Natl Acad Sci USA 116:1792–1801. https://doi.org/10.1073/pnas.1818371116
Rath W (1999) Co-adaptation of Apis cerana Fabr. and Varroa jacobsoni Oud. Apidologie 30:97–110. https://doi.org/10.1051/apido:19990202
Rinkevich FD, Du Y, Dong K (2013) Diversity and convergence of sodium channel mutations involved in resistance to pyrethroids. Pestic Biochem Physiol 106:93–100. https://doi.org/10.1016/j.pestbp.2013.02.007
Rinkevich FD et al (2012a) Multiple origins of kdr-type resistance in the house fly, Musca domestica. Plos ONE 7:e52761. https://doi.org/10.1371/journal.pone.0052761
Rinkevich FD, Su C, Lazo TA, Hawthorne DJ, Tingey WM, Naimov S, Scott JG (2012b) Multiple evolutionary origins of knockdown resistance (kdr) in pyrethroid-resistant Colorado potato beetle, Leptinotarsa decemlineata. Pestic Biochem Physiol 104:192–200. https://doi.org/10.1016/j.pestbp.2012.08.001
Roberts JMK, Anderson DL, Tay WT (2015) Multiple host shifts by the emerging honeybee parasite, Varroa jacobsoni. Mol Ecol 24:2379–2391. https://doi.org/10.1111/mec.13185
Rosenkranz P, Aumeier P, Ziegelmann B (2010) Biology and control of Varroa destructor. J Invertebr Pathol 103(Suppl 1):S96-119. https://doi.org/10.1016/j.jip.2009.07.016
Rozas J, Ferrer-Mata A, Sánchez-DelBarrio JC, Guirao-Rico S, Librado P, Ramos-Onsins SE, Sánchez-Gracia A (2017) DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol Biol Evol 34:3299–3302. https://doi.org/10.1093/molbev/msx248
Schäfer MO et al (2019) How to slow the global spread of small hive beetles, Aethina tumida. Biol Invasions 21:1451–1459. https://doi.org/10.1007/s10530-019-01917-x
Simone-Finstrom M, Li-Byarlay H, Huang MH, Strand MK, Rueppell O, Tarpy DR (2016) Migratory management and environmental conditions affect lifespan and oxidative stress in honey bees. Sci Rep 6:32023. https://doi.org/10.1038/srep32023
Solignac M et al (2005) The invasive Korea and Japan types of Varroa destructor, ectoparasitic mites of the Western honeybee (Apis mellifera), are two partly isolated clones. Proc Biol Sci 272:411–419. https://doi.org/10.1098/rspb.2004.2853
Solignac M, Vautrin D, Pizzo A, Navajas M, Le Conte Y, Cornuet J-M (2003) Characterization of microsatellite markers for the apicultural pest Varroa destructor (Acari: Varroidae) and its relatives. Mol Ecol Notes 3:556–559. https://doi.org/10.1046/j.1471-8286.2003.00510.x
Standley DM, Katoh K (2013) MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol Biol Evol 30:772–780. https://doi.org/10.1093/molbev/mst010
Stanimirović Z, Glavinić U, Ristanić M, Aleksić N, Jovanović N, Vejnović B, Stevanović J (2019) Looking for the causes of and solutions to the issue of honey bee colony losses. Acta Vet 69:1–31. https://doi.org/10.2478/acve-2019-0001
Stara J et al (2019) Detection of tau-fluvalinate resistance in the mite Varroa destructor based on the comparison of vial test and PCR–RFLP of kdr mutation in sodium channel gene. Exp Appl Acarol 77:161–171. https://doi.org/10.1007/s10493-019-00353-9
Steinhauer N, Kulhanek K, Antunez K, Human H, Chantawannakul P, Chauzat MP, vanEngelsdorp D (2018) Drivers of colony losses. Curr Opin Insect Sci 26:142–148. https://doi.org/10.1016/j.cois.2018.02.004
Thompson HM, Brown MA, Ball RF, Bew MH (2002) First report of Varroa destructor resistance to pyrethroids in the UK. Apidologie 33:357–366. https://doi.org/10.1051/apido:2002027
Usherwood PN et al (2007) Mutations in DIIS5 and the DIIS4-S5 linker of Drosophila melanogaster sodium channel define binding domains for pyrethroids and DDT. FEBS Lett 581:5485–5492. https://doi.org/10.1016/j.febslet.2007.10.057
Vais H, Atkinson S, Eldursi N, Devonshire AL, Williamson MS, Usherwood PNR (2000) A single amino acid change makes a rat neuronal sodium channel highly sensitive to pyrethroid insecticides. FEBS Lett 470:135–138. https://doi.org/10.1016/S0014-5793(00)01305-3
Walsh PS, Metzger DA, Higuchi R (1991) Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotechniques 10:506–513
Wang RW, Liu ZQ, Dong K, Elzen PJ, Pettis J, Huang ZY (2002) Association of novel mutations in a sodium channel gene with fluvalinate resistance in the mite, Varroa destructor. J Apic Res 41:17–25
Weston DP, Poynton HC, Wellborn GA, Lydy MJ, Blalock BJ, Sepulveda MS, Colbourne JK (2013) Multiple origins of pyrethroid insecticide resistance across the species complex of a nontarget aquatic crustacean, Hyalella azteca. Proc Natl Acad Sci. https://doi.org/10.1073/pnas.1302023110
Wilfert L, Long G, Leggett HC, Schmid-Hempel P, Butlin R, Martin SJM, Boots M (2016) Deformed wing virus is a recent global epidemic in honeybees driven by Varroa mites. Science 351:594–597. https://doi.org/10.1126/science.aac9976
Williamson MS, Martinez-Torres D, Hick CA, Devonshire AL (1996) Identification of mutations in the housefly para-type sodium channel gene associated with knockdown resistance (kdr) to pyrethroid insecticides. Mol Gen Genet MGG 252:51–60. https://doi.org/10.1007/BF02173204
Wu M, Adesanya AW, Morales MA, Walsh DB, Lavine LC, Lavine MD, Zhu F (2018) Multiple acaricide resistance and underlying mechanisms in Tetranychus urticae on hops. J Pest Sci 92:543–555. https://doi.org/10.1007/s10340-018-1050-5
Yang X, Cox-Foster DL (2005) Impact of an ectoparasite on the immunity and pathology of an invertebrate: Evidence for host immunosuppression and viral amplification. Proc Natl Acad Sci USA 102:7470–7475. https://doi.org/10.1073/pnas.0501860102
Yoon KS, Kwon DH, Strycharz JP, Hollingsworth CS, Lee SH, Clark JM (2008) Biochemical and molecular analysis of deltamethrin resistance in the common bed bug (Hemiptera: Cimicidae). J Med Entomol 45:1092–1101. https://doi.org/10.1603/0022-2585(2008)45[1092:bamaod]2.0.co;2
Zuo Y, Peng X, Wang K, Lin F, Li Y, Chen M (2016) Expression patterns, mutation detection and RNA interference of Rhopalosiphum padi voltage-gated sodium channel genes. Sci Rep 6:30166. https://doi.org/10.1038/srep30166
Acknowledgements
The authors want to thank all beekeepers, beekeeper associations and the Apiary inspectors of America for providing the mite samples used in this study. Frank Rinkevich (USDA, Baton Rouge, Louisiana) revised earlier versions of this manuscript, his comments and suggestions have greatly improved the final version.
Funding
The work at the University of Valencia was funded by the Spanish Ministry of Science, Innovation and Universities (Grant: RTI2018-095120-B-I00). JGC and IM were supported by the Spanish Ministry of Economy and Competitiveness, Ramón y Cajal (Grant: RYC-2013-13834) and Juan de la Cierva‐Incorporación (Grant: JCI2018-036614-I) programs, respectively. PDlR was supported by Fundación Séneca (Grant: 19908/GERM/2015). Samples collection in the USA was funded by the US National Honey Bee Disease Survey USDA-APHIS (16-8100-1624-CA, 15-8100-1624-CA).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Consent to participate
Not applicable.
Consent for publication
All authors consent to the publication of this manuscript in Journal of Pest Science.
Ethical approval
This study does not contain any experiments using any animal species that require ethical approval.
Additional information
Communicated by C. Cutler.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Millán-Leiva, A., Marín, Ó., De la Rúa, P. et al. Mutations associated with pyrethroid resistance in the honey bee parasite Varroa destructor evolved as a series of parallel and sequential events. J Pest Sci 94, 1505–1517 (2021). https://doi.org/10.1007/s10340-020-01321-8
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10340-020-01321-8