Population genetic structure of Anoplophora glabripennis in South Korea: Invasive populations in the native range?

Abstract

Native to China and the Korean Peninsula, the Asian longhorned beetle (ALB), Anoplophora glabripennis, has been introduced to North America and Europe. In both its native range and the territory it has invaded, ALB is responsible for the death or removal of millions of urban, roadside, and forest trees. Here, we present the population genetic structure of ALB in South Korea, using 801 bp of mitochondrial DNA and the most comprehensive sampling to date. ALB populations in South Korea are divided into three distinct geographical subgroups: the northeastern natural forest, and the western and southern urban areas. Historical records suggest that the forest-dwelling subgroup is native, as does the moderate genetic diversity of this population. Meanwhile, the fact that ALB was first observed in the western and southern areas only recently, the extreme genetic bottleneck status of these populations, their distribution in large port cities and adjacent areas, and the difference in observed host plants used by the forest subgroup and the urban subgroups suggest that the urban populations are non-native recent invaders. Approximate Bayesian computation suggests that the western and southern subgroups most likely originated from northeastern and northwestern China, respectively. Therefore, our study demonstrates that ALB invasion has occurred even within the species’ native territory. This finding alters our perception of biological invasion by providing a unique example of a species that has invaded its own native range.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Beaumont MA, Zhang WY, Balding DJ (2002) Approximate Bayes-ian computation in population genetics. Genetics 162:2025–2035

    PubMed  PubMed Central  Google Scholar 

  2. Carter ME, Smith MT, Harrison RG (2009) Patterns of genetic variation among populations of the Asian longhorned beetle (Coleoptera: Cerambycidae) in China and Korea. Ann Entomol Soc Am 102(5):895–905

    Google Scholar 

  3. Carter ME, Smith MT, Harrison RG (2010) Genetic analyses of the Asian longhorned beetle (Coleoptera, Cerambycidae, Anoplophora glabripennis), in North America, Europe and Asia. Biol Invasions 12(5):1165–1182

    Google Scholar 

  4. Clement M, Posada D, Crandall KA (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9:1657–1659

    CAS  PubMed  Google Scholar 

  5. Cornuet JM, Pudlo P, Veyssier J, Dehne-Garcia A, Gautier M, Leblois R, Marin J-M, Estoup A (2014) DIYABC v2.0: a software to make approximate Bayesian computation inferences about population history using single nucleotide polymorphism, DNA sequence and microsatellite data. Bioinformatics 30:1187–1189

    CAS  PubMed  Google Scholar 

  6. Dethier VG (1959) Food-plant distribution and density and larval dispersal as factors affecting insect populations. Can Entomol 91(9):581–596

    Google Scholar 

  7. Ellstrand NC, Schierenbeck KA (2000) Hybridization as a stimulus for the evolution of invasiveness in plants? Proc Natl Acad Sci USA 97(13):7043–7050

    CAS  PubMed  Google Scholar 

  8. Essl F, Bacher S, Blackburn TM, Booy O, Brundu G, Brunel S et al (2015) Crossing frontiers in tackling pathways of biological invasions. Bioscience 65:769–782

    Google Scholar 

  9. Estoup A, Guillemaud T (2010) Reconstructing routes of invasion using genetic data: why, how and so what? Mol Ecol 19:4113–4130

    PubMed  Google Scholar 

  10. European and Mediterranean Plant Protection Organization (EPPO) Global Database (2019) https://gd.eppo.int/taxon/AnOLGL/reporting

  11. Excoffier L, Lischer HE (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10(3):564–567

    PubMed  Google Scholar 

  12. Facon B, Jarne P, Pointier JP, David P (2005) Hybridization and invasiveness in the freshwater snail Melanoides tuberculata: hybrid vigour is more important than increase in genetic variance. J Evol Biol 18(3):524–535

    CAS  PubMed  Google Scholar 

  13. Food and Agriculture Organization (2019) FAO glossary of phytosanitary terms. OEPP

  14. Fraimout A, Debat V, Fellous S, Hufbauer RA, Foucaud J, Pudlo P, Estoup A (2017) Deciphering the routes of invasion of Drosophila suzukii by means of ABC random forest. Mol Biol Evol 34:980–996

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Haack RA, Cavey JF, Hoebeke ER, Law K (1996) Anoplophora glabripennis: a new tree-infesting exotic cerambycid invades New York. Michigan Ent Soc Newsl 41(2–3):1–3

    Google Scholar 

  16. Haack RA, Hérard F, Sun J, Turgeon JJ (2010) Managing invasive populations of Asian longhorned beetle and citrus longhorned beetle: a worldwide perspective. Annu Rev Entomol 55:521–546

    CAS  PubMed  Google Scholar 

  17. Harrison S (1994) Resources and dispersal as factors limiting a population of the tussock moth (Orgyia vetusta), a flightless defoliator. Oecologia 99:27–34

    PubMed  Google Scholar 

  18. Hulme PE (2009) Trade, transport and trouble: managing invasive species pathways in an era of globalization. J Appl Entomol 46(1):10–18

    Google Scholar 

  19. Hurley BP, Garnas J, Wingfield MJ, Branco M, Richardson DM, Slippers B (2016) Increasing numbers and intercontinental spread of invasive insects on eucalypts. Biol Invasions 18(4):921–933

    Google Scholar 

  20. Hwang SH (2015) Long-horned beetles in Korea. In: Checklist of organisms in Korea, vol 14. Nature and Ecology, Seoul

  21. Jang HK, Lee SH, Choi W (2015) Cerambycidae of Korea. Geobook, Seoul

    Google Scholar 

  22. Javal M, Roux G, Roques A, Sauvard D (2018) Asian Long-horned Beetle dispersal potential estimated in computer-linked flight mills. J Appl Entomol 142(1–2):282–286

    CAS  Google Scholar 

  23. Javal M, Lombaert E, Tsykun T, Courtin C, Kerdelhué C, Prospero S, Roques A, Roux G (2019a) Deciphering the worldwide invasion of the Asian long-horned beetle: a recurrent invasion process from the native area together with a bridgehead effect. Mol Ecol 28(5):951–967

    PubMed  Google Scholar 

  24. Javal M, Roques A, Haran J, Hérard F, Keena M, Roux G (2019b) Complex invasion history of the Asian long-horned beetle: fifteen years after first detection in Europe. J Pest Sci 92(1):173–187

    Google Scholar 

  25. Kalyaanamoorthy S, Minh BQ, Wong TK, von Haeseler A, Jermiin LS (2017) ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods 14(6):587

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Katoh K, Rozewicki J, Yamada KD (2017) MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform 20:1160–1166

    PubMed Central  Google Scholar 

  27. Kim MS, Kim KY, Lee W, Hong KJ (2019) Reporting the possibility of invasive populations of Anoplophora spp in Korea. J Asia Pac Biodivers 12(2):211–216

    CAS  Google Scholar 

  28. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33(7):1870–1874

    CAS  Google Scholar 

  29. Lee SM (1987) The longicorn beetles of Korean Peninsula. National Science Museum, Seoul

    Google Scholar 

  30. Lee HS, Wilson SW (2010) First report of the Nearctic flatid planthopper Metcalfa pruinosa (Say) in the Republic of Korea (Hemiptera: Fulgoroidea). Entomol News 121(5):506–513

    Google Scholar 

  31. Lim JL, Kim KG, Lim JO, Choi IJ, Park J, Park JK (2014) First record of Anoplophora freyi (Coleoptera: Cerambycidae: Lamiinae) in Korea. Entomol Res Bull 30(1):64–67

    Google Scholar 

  32. Lingafelter SW, Hoebeke ER (2002) Revision of the genus Anoplophora (Coleoptera: Cerambycidae) (No. 595.7648 L5). Entomological Society of Washington, Washington, DC

  33. Linsley EG (1959) Ecology of cerambycidae. Annu Rev Entomol 4(1):99–138

    Google Scholar 

  34. Lombaert E, Guillemaud T, Cornuet JM, Malausa T, Facon B, Estoup A (2010) Bridgehead effect in the worldwide invasion of the biocontrol harlequin ladybird. PLoS ONE 5(3):e9743

    PubMed  PubMed Central  Google Scholar 

  35. Lombaert E, Ciosi M, Miller NJ, Sappington TW, Blin A, Guillemaud T (2018) Colonization history of the Western Corn Rootworm (Diabrotica virgifera virgifera) in North-America: insights from random forest ABC using microsatellite data. Biol Invasions 20:665–677

    Google Scholar 

  36. Lopez VM, Hoddle MS, Francese JA, Lance DR, Ray AM (2017) Assessing flight potential of the invasive Asian longhorned beetle (Coleoptera: Cerambycidae) with computerized flight mills. J Econ Entomol 110(3):1070–1077

    PubMed  Google Scholar 

  37. Lowe S, Browne M, Boudjelas S, De Poorter M (2000) 100 of the world’s worst invasive alien species: a selection from the global invasive species database, vol 12. Invasive Species Specialist Group, Auckland

    Google Scholar 

  38. Lyu DP, Lee HS (2017) The red imported fire ant, Solenopsis invicta Buren (Hymenoptera: Formicidae: Myrmicinae) discovered in Busan sea port, Korea. Korean J Appl Entomol 56(4):437–438

    Google Scholar 

  39. Mankin RW, Smith MT, Tropp JM, Atkinson EB, Jong DY (2008) Detection of Anoplophora glabripennis (Coleoptera: Cerambycidae) larvae in different host trees and tissues by automated analyses of sound-impulse frequency and temporal patterns. J Econ Entomol 101(3):838–849

    CAS  PubMed  Google Scholar 

  40. Meng PS, Hoover K, Keena MA (2015) Asian Longhorned Beetle (Coleoptera: Cerambycidae), an introduced pest of maple and other hardwood trees in North America and Europe. J Integr Pest Manag 6:4

    Google Scholar 

  41. Ministry of Oceans and Fisheries (MOF) (2018) Total volume of cargo handled by major ports. http://www.index.go.kr/potal/stts/idxMain/selectPoSttsIdxSearch.do?idx_cd=1265&stts_cd=126502&freq=Y

  42. Múrias dos Santos A, Cabezas MP, Tavares AI, Xavier R, Branco M (2015) tcsBU: a tool to extend TCS network layout and visualization. Bioinformatics 32(4):627–628

    PubMed  Google Scholar 

  43. Ohbayashi N, Ogawa J, Su ZH (2009) Phylogenetic analysis of the Lamiine genus Anoplophora and its relatives (Coleoptera, Cerambycidae) based on the mitochondrial COI gene. Special Bull Japanese Soc Coleopterol 7:309–324

    Google Scholar 

  44. Prospero S, Cleary M (2017) Effects of host variability on the spread of invasive forest diseases. Forests 8(3):80

    Google Scholar 

  45. Puillandre N, Dupas S, Dangles O, Zeddam JL et al (2008) Genetic bottleneck in invasive species: the potato tuber moth adds to the list. Biol Invasions 10(3):319–333

    Google Scholar 

  46. Roques A (2010) Alien forest insects in a warmer world and a globalised economy: impacts of changes in trade, tourism, and climate on forest biosecurity. New Zeal J For Sci 40:77–94

    Google Scholar 

  47. Schierenbeck KA, Ellstrand NC (2009) Hybridization and the evolution of invasiveness in plants and other organisms. Biol Invasions 11(5):1093–1105

    Google Scholar 

  48. Seebens H et al (2017) No saturation in the accumulation of alien species worldwide. Nat Commun 8:14435

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Shi J, Macel M, Tielbörger K, Verhoeven KJ (2018) Effects of admixture in native and invasive populations of Lythrum salicaria. Biol Invasions 20(9):2381–2393

    PubMed  PubMed Central  Google Scholar 

  50. Sjöman H, Östberg J, Nilsson J (2014) Review of host trees for the wood-boring pests Anoplophora glabripennis and Anoplophora chinensis: an urban forest perspective. Arboric Urban For 40:143–164

    Google Scholar 

  51. Smith MT, Tobin PC, Bancroft J, Li G, Gao R (2004) Dispersal and spatiotemporal dynamics of Asian longhorned beetle (Coleoptera: Cerambycidae) in China. Environ Entomol 33(2):435–442

    Google Scholar 

  52. Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30(9):1312–1313

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Trotter RT, Pepper E, Davis K, Vazquez R (2019) Anisotropic dispersal by the Asian longhorned beetle (Anoplophora glabripennis): quantifying spatial risk and eradication effort with limited biological data. Biol Invasions 21:1179–1195

    Google Scholar 

  54. Tsykun T, Javal M, Hölling D, Roux G, Prospero S (2019) Fine-scale invasion genetics of the quarantine pest, Anoplophora glabripennis, reconstructed in single outbreaks. Sci Rep 9(1):19436

    PubMed  PubMed Central  Google Scholar 

  55. van Kleunen M, Rockle M, Stift M (2015) Admixture between native and invasive populations may increase invasiveness of Mimulus guttatus. Proc R Soc B Biol Sci. 282:20151487

    Google Scholar 

  56. Wenhua L (2004) Degradation and restoration of forest ecosystems in China. For Ecol Manag 201(1):33–41

    Google Scholar 

  57. Williams DW, Lee HP, Kim IK (2004) Distribution and abundance of Anoplophora glabripennis (Coleoptera: Cerambycidae) in natural Acer stands in South Korea. Environ Entomol 33(3):540–545

    Google Scholar 

  58. Woo KS (1961) Studies on the Hyphantria cunea (Drury), a newly introduced insect pest. Seoul Natl Univ Bull Agric Biol 5:11–23

    Google Scholar 

  59. Yang XM, Sun JT, Xue XF, Li JB, Hong XY (2012) Invasion genetics of the western flower thrips in China: evidence for genetic bottleneck, hybridization and bridgehead effect. PLoS ONE 7(4):e34567

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The first author would like to acknowledge Dr. Eric Lombaert for his invaluable cooperation for ABC analyses. The first author also thanks Hyunkyu Jang, Woong Choi, Jaedong Kim, and Seung-gu Son for their invaluable cooperation on ALB collection. Prof. Yeonjae Bae (KEIU) and Mr. Jaewon Ryu (EWUC) are acknowledged for allowing examination of the museum specimens. We also thank Prof. Yang-Seop Bae, Prof. Bong-Kyu Byun, Prof. Jong Kyun Park, Prof. Young-Seuk Park, and their laboratory members for their cooperation on the field survey in 2019. This research was supported by the R&D Program for Forest Science Technology (FTIS 2017042A00-1823-CA01) provided by Korea Forest Service (Korea Forestry Promotion Institute) and by Korea Environment Industry and Technology Institute (KEITI) through Exotic Invasive Species Management Program, funded by Korea Ministry of Environment (MOE) (2018002270005).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Seunghwan Lee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by C. Stauffer.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 966 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lee, S., Lee, Y. & Lee, S. Population genetic structure of Anoplophora glabripennis in South Korea: Invasive populations in the native range?. J Pest Sci 93, 1181–1196 (2020). https://doi.org/10.1007/s10340-020-01245-3

Download citation

Keywords

  • Asian longhorned beetle
  • Invasion
  • Bottleneck
  • Population genetics