Skip to main content
Log in

Competitive interaction between Frankliniella occidentalis and locally present thrips species: a global review

  • Review
  • Published:
Journal of Pest Science Aims and scope Submit manuscript

Abstract

The most severe outcome of the widespread interspecific competition that occurs between invasive organisms and their local congeners is species displacement. The western flower thrips, Frankliniella occidentalis (Pergande), which originated from western North America, has invaded much of the agricultural world since the 1970s, and in so doing, has become a dominant thrips species in many of the areas it has invaded. Its invasion success and the extent of its distribution in the regions it has invaded can be largely attributed to its superiority in interspecific competition. In some instances, however, F. occidentalis has been less successful in its invasion attempts and has not become dominant in its new environment. Thrips species displacements often arise from interactions of different mechanisms that are mediated by numerous biotic and abiotic factors. In this review, we summarize competitive interaction events that have been documented between F. occidentalis and several species of other locally present thrips, their interaction mechanisms and mediating factors. This review will help to better understand displacement events of thrips species in some areas and to develop management strategies for thrips species with high invasion potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alim MA, Song J, Seo HJ, Choi JJ (2018) Monitoring thrips species with yellow sticky traps in astringent persimmon orchards in Korea. Appl Entomol Zool 53(1):75–84

    Google Scholar 

  • Arthurs SP, Kok-Yokomi ML, Smith H (2015) Florida flower thrips: Frankliniella bispinosa Morgan. Featured Creatures, IFAS Extension, University of Florida. https://entnemdept.ufl.edu/creatures/VEG/THRIPS/Frankliniella_bispinosa.htm. Accessed Oct 2015

  • Atakan E, Uygur S (2005) Winter and spring abundance of Frankliniella spp. and Thrips tabaci Lindeman (Thysan., Thripidae) on weed host plants in Turkey. J Appl Entomol 129(1):17–26

    Google Scholar 

  • Beaudoin ALP, Kennedy GG (2012) Management of Winter Weeds Affects Frankliniella fusca (Thysanoptera: Thripidae) dispersal. Environ Entomol 41(2):362–369

    CAS  PubMed  Google Scholar 

  • Berndt O, Meyhöfer R, Poehling HM (2004) The edaphic phase in the ontogenesis of Frankliniella occidentalis and comparison of Hypoaspis miles and Hypoaspis aculeifer as predators of soil dwelling thrips stage. Biol Control 30:17–24

    Google Scholar 

  • Bielza P (2008) Insecticide resistance management strategies against the western flower thrips, Frankliniella occidentalis. Pest Manag Sci 64:1131–1138

    CAS  PubMed  Google Scholar 

  • Borbón CM, Gracia O, Piccolo R (2006) Relationships between tospovirus incidence and thrips populations on tomato in Mendoza. Argentina J Phytopathol 154(2):93–99

    Google Scholar 

  • Cannon RJC, Matthews L, Collins DW (2007) A review of the pest status and control options for Thrips palmi. Crop Prot 26(8):1089–1098

    CAS  Google Scholar 

  • Cao Y, Zhi JR, Zhang RZ, Li C, Liu Y, Lv ZY, Gao YL (2018) Different population performances of Frankliniella occidentalis and Thrips hawaiiensis on flowers of two horticultural plants. J Pest Sci 91(1):79–91

    Google Scholar 

  • Carter E, Gillett-Kaufman JL (2015) Tobacco thrips: Frankliniella fusca (Hinds). Featured Creatures, IFAS Extension, University of Florida. https://entnemdept.ufl.edu/creatures/VEG/THRIPS/Frankliniella_fusca.htm. Accessed Sept 2015

  • Chitturi A, Riley DG, Joost PH (2006) Effect of pine pollen on settling behavior of Frankliniella occidentalis and Frankliniella fusca (Thysanoptera: Thripidae) on tomato and peanut. Environ Entomol 35(5):1396–1403

    Google Scholar 

  • Cloyd RA (2009) Western flower thrips (Frankliniella occidentalis) management on ornamental crops grown in greenhouses: have we reached an impasse? Pest Techn 3(1):1–9

    Google Scholar 

  • Cluever JD, Smith HA (2016) Pest information guide: eastern flower thrips Frankliniella tritici (Fitch), IFAS Extension, University of Florida. https://edis.ifas.ufl.edu/in1137. Accessed July 2016

  • Cox PD, Matthews L, Jacobson RJ, Cannon R, MacLeod A, Walters KFA (2006) Potential for the use of biological agents for the control of Thrips palmi (Thysanoptera: Thripidae) outbreaks. Biocontrol Sci Technol 16(9):871–891

    Google Scholar 

  • Deligeorgidis PN, Ipsilandis CG (2004) Determination of soil depth inhabited by Frankliniella occidentalis (Pergande) and Thrips tabaci Lindeman (Thysan., Thripidae) under greenhouse cultivation. J Appl Entomol 128(2):108–111

    Google Scholar 

  • Demirozer O, Tyler-Julian K, Funderburk J, Leppla N, Reitz S (2012) Frankliniella occidentalis, (Pergande) integrated pest management programs for fruiting vegetables in Florida. Pest Manag Sci 68(12):1537–1545

    CAS  PubMed  Google Scholar 

  • Diaz-Montano J, Fuchs M, Nault BA, Fail J, Shelton AM (2011) Onion thrips (Thysanoptera: Thripidae): a global pest of increasing concern in onion. J Econ Entomol 104(1):1–13

    PubMed  Google Scholar 

  • Doederlein TA, Sites RW (1993) Host plant preferences of Frankliniella occidentalis and Thrips tabaci (Thysanoptera: Thripidae) for onions and associated weeds on the southern high plains. J Econ Entomol 86(6):1706–1713

    Google Scholar 

  • Eckel CS, Cho K, Walgenbach JF, Kennedy GG, Moyer JW (1996) Variation in thrips species composition in field crops and implications for tomato spotted wilt epidemiology in North Carolina. Entomol Exp Appl 78(1):19–29

    Google Scholar 

  • Fu BL, Li Q, Qiu HY, Tang LD, Zeng DQ, Liu K, Gao YL (2018) Resistance development, stability, cross-resistance potential, biological fitness and biochemical mechanisms of spinetoram resistance in the Thrips hawaiiensis (Thysanoptera: Thripidae). Pest Manag Sci 74(7):1564–1574

    CAS  PubMed  Google Scholar 

  • Funderburk J, Frantz G, Mellinger C, Tyler-Julian K, Srivastava M (2016) Biotic resistance limits the invasiveness of the western flower thrips, Frankliniella occidentalis (Thysanoptera: Thripidae). Florida Insect Sci 23(2):175–182

    CAS  PubMed  Google Scholar 

  • Gao YL, Reitz SR (2017) Emerging themes in our understanding of species displacements. Ann Rev Entomol 62:165–183

    CAS  Google Scholar 

  • Gai HT, Zhi JR, Li ZX, Jiang YJ (2010) Survival rates of Frankliniella occidentalis and Frankliniella intonsa after exposure to adverse temperature conditions. Chin J Ecol 29(8):1533–1537

    Google Scholar 

  • Gai HT, Zhi JR, Sun M (2011) Effects of temperature on the survival and fecundity of Frankliniella occidentalis and Frankliniella intonsa. J Plant Prot 38(6):521–526

    Google Scholar 

  • Gai HT, Zhi JR, Yue Z (2012a) Population dynamics Frankliniella occidentalis and Frankliniella intonsa on pepper. Southwest China J Agri Sci 25(1):337–339

    Google Scholar 

  • Gao YL, Lei ZR, Reitz SR (2012b) Western flower thrips resistance to insecticides: detection, mechanisms and management strategies. Pest Manag Sci 68(8):1111–1121

    CAS  PubMed  Google Scholar 

  • Garrick TA, Liburd OE, Funderburk J (2016) Effect of humidity on fecundity and egg incubation of Frankliniella bispinosa and Frankliniella occidentalis (Thysanoptera: Thripidae). Fla Entomol 99(3):505–508

    Google Scholar 

  • Ghosh A, Jagdale SS, Basavaraj DRG, Jain RK (2019) Genetics of Thrips palmi (Thysanoptera: Thripidae). J Pest Sci. https://doi.org/10.1007/s10340-019-01160-2

    Article  Google Scholar 

  • Gikonyo MW, Niassy S, Moritz GB, Khamis FM, Magiri E, Subramanian S (2017) Resolving the taxonomic status of Frankliniella schultzei (Thysanoptera: Thripidae) colour forms in Kenya—a morphological-, biological-, molecular-and ecological-based approach. Int J Trop Insect Sci 37(2):57–70

    Google Scholar 

  • Groves RL, Walgenbach JF, Moyer JW, Kennedy GG (2003) Seasonal dispersal patterns of Frankliniella fusca (Thysanoptera: Thripidae) and tomato spotted wilt virus occurrence in central and eastern North Carolina. J Econ Entomol 96(1):1–11

    CAS  PubMed  Google Scholar 

  • Hata TY, Hara AH, Hu BK, Kaneko RT, Tenbrink VL (1993) Field sprays and insecticidal dips after harvest for pest management of Frankliniella occidentalis and Thrips palmi (Thysanoptera: Thripidae) on orchids. J Econ Entomol 86(5):1483–1489

    Google Scholar 

  • He SQ, Lin Y, Qian L, Li ZH, Xi C, Lu Y, Gui FR (2017) The influence of elevated CO2 concentration on the fitness traits of Frankliniella occidentalis and Frankliniella intonsa (Thysanoptera: Thripidae). Environ Entomol 46(3):722–728

    CAS  Google Scholar 

  • He Z, Guo JF, Reitz SR, Lei ZR, Wu SY (2019) A global invasion by the thrips, Frankliniella occidentalis: current virus vector status and its management. Insect Sci. https://doi.org/10.1111/1744-7917.12721

    Article  PubMed  PubMed Central  Google Scholar 

  • Healey MA, Senior LJ, Brown PH, Duff J (2017) Relative abundance and temporal distribution of adult Frankliniella occidentalis (Pergande) and Frankliniella schultzei (Trybom) on French bean, lettuce, tomato and zucchini crops in relation to crop age. J Asia-Pac Entomol 20(3):859–865

    Google Scholar 

  • Henriksen JW, Lim DS, Lu XM, Ding JQ, Siemann E (2018) Strong effects of hydrologic environment and weak effects of elevated CO2 on the invasive weed Alternanthera philoxeroides and the biocontrol beetle Agasicles hygrophila. Arthropod-Plant Inte 12(5):691–700

    Google Scholar 

  • Hereward J, Hutchinson JA, McCulloch GA, Silva R, Walter GH (2017) Divergence among generalist herbivores: the Frankliniella schultzei species complex in Australia (Thysanoptera: Thripidae). Arthropod-Plant Inte 11(6):875–887

    Google Scholar 

  • Jiang XC, Li ZH, Cao ZY, He SQ, Li ZY, Liu JY, Gui FR (2013) Population dynamics and spatial distribution of thrips on vegetables flowers. Chin J Appl Entomol 50(6):1628–1636

    Google Scholar 

  • Joost PH, Riley DG (2004) Sampling techniques for thrips (Thysanoptera: Thripidae) in preflowering tomato. J Econ Entomol 97(4):1450–1454

    PubMed  Google Scholar 

  • Joost PH, Riley DG (2005) Imidacloprid effects on probing and settling behavior of Frankliniella fusca and Frankliniella occidentalis (Thysanoptera: Thripidae) in tomato. J Econ Entomol 98(5):1622–1629

    CAS  PubMed  Google Scholar 

  • Joost PH, Riley DG (2008) Tomato plant and leaf age effects on the probing and settling behavior of Frankliniella fusca and Frankliniella occidentalis (Thysanoptera: Thripidae). Environ Entomol 37(1):213–223

    PubMed  Google Scholar 

  • Kakkar G, Seal DR, Jha VK (2017) Common blossom thrips: Frankliniella schultzei Trybom. Featured Creatures, IFAS Extension, University of Florida. https://entnemdept.ufl.edu/creatures/veg/thrips/common_blossom_thrips.htm. Accessed July 2017

  • Kawai A (2001) Population management of Thrips palmi Karny. Jpn J Appl Entomol Zool 45:39–59

    Google Scholar 

  • Kirk WDJ (2002) The pest and vector from the West: Frankliniella occidentalis. In: Thrips and Tospoviruses: proceedings of the 7th international symposium on Thysanoptera, vol 2. no 7. Australian National Insect Collection, Canberra, Australia, pp 33–42

  • Kirk WDJ, Terry LI (2003) The spread of the western flower thrips Frankliniella occidentalis (Pergande). Agr For Entomol 5:301–310

    Google Scholar 

  • Kumar NK, Ullman DE, Cho JJ (1995) Frankliniella occidentalis (Thysanoptera: Thripidae) landing and resistance to tomato spotted wilt tospovirus among Lycopersicon accessions with additional comments on Thrips tabaci (Thysanoptera: Thripidae) and Trialeurodes vaporariorum (Homoptera: Aleyrodidae). Environ Entomol 24(3):513–520

    Google Scholar 

  • Kuo YW, Gilbertson RL, Turini T, Brennan EB, Smith RF, Koike TF (2014) Characterization and epidemiology of outbreaks of impatiens necrotic spot virus on lettuce in coastal California. Plant Dis 98(8):1050–1059

    CAS  PubMed  Google Scholar 

  • Lacasa A, Esteban JR, Beitia FJ, Contreras J (1995) Distribution of western flower thrips in Spain. In: Parker BL, Skinner M, Lewis T (eds) Thrips biology and management. Plenum Press, New York, pp 465–468

    Google Scholar 

  • Lewis T (1997) Pest thrips in perspective. In: Lewis T (ed) Thrips as crop pests. CAB International, New York, pp 1–13

    Google Scholar 

  • Li X, Schuler MA, Berenbaum MR (2007) Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics. Ann Rev Entomol 52:231–253

    Google Scholar 

  • Li WD, Zhang PJ, Zhang JM, Zhang ZJ, Huang F, Bei YW, Lin WC, Lu YB (2015) An evaluation of Frankliniella occidentalis (Thysanoptera: Thripidae) and Frankliniella intonsa (Thysanoptera: Thripidae) performance on different plant leaves based on life history characteristics. J Insect Sci 15(1):1–5

    Google Scholar 

  • Liu JY, Qian L, Ke R, Chen XY, Li ZY, Gui FR (2017) Effects of elevated carbon dioxide on the activities of physiological enzymes in thrips Frankliniella occidentalis and F. intonsa fed on different host plants. J Plant Prot 44(1):45–53

    CAS  Google Scholar 

  • Lowry VK, Smith JW Jr, Mitchell FL (1992) Life-fertility tables for Frankliniella fusca (Hinds) and F. occidentals (Pergande) (Thysanoptera: Thripidae) on peanut. Ann Entomol Soc Am 85(6):744–754

    Google Scholar 

  • Macharia I, Backhouse D, Skilton R, Ateka E, Wu SB, Njahira M, Maina S, Harvey J (2015) Diversity of thrips species and vectors of tomato spotted wilt virus in tomato production systems in Kenya. J Econ Entomol 108(1):20–28

    CAS  PubMed  Google Scholar 

  • Maris PC, Joosten NN, Peters D, Goldbach RW (2003) Thrips resistance in pepper and its consequence for the acquisition and inoculation of tomato spotted wilt virus by the western flower thrips. Phytopathology 93:96–101

    CAS  PubMed  Google Scholar 

  • Marullo R, De Grazia A (2017) Thrips hawaiiensis a pest thrips from Asia newly introduced into Italy. Bull Insectol 70(1):27–30

    Google Scholar 

  • Milne M, Walter GH (1997) The significance of prey in the diet of the phytophagous thrips, Frankliniella schultzei. Ecol Entomol 22(1):74–81

    Google Scholar 

  • Milne M, Walter GH (2000) Feeding and breeding across host plants within a locality by the widespread thrips Frankliniella schultzei, and the invasive potential of polyphagous herbivores. Divers Distrib 6(5):243–257

    Google Scholar 

  • Mitchell FL, Smith Jr JW (1991) Epidemiology of tomato spotted wilt virus relative to thrips populations. In: Hsu HT, Lawson RH (eds) Virus-thrips-plant interactions of tomato spotted wilt, proceedings of a USDA workshop. Beltsville, pp 46–52

  • Miyata K, Kikuchi T, Katoh H, Kagawa K, Sonoda S, Murai T (2016) Lethal effects of concentrated CO2 on adult females and eggs of Frankliniella occidentalis and Frankliniella intonsa (Thysanoptera: Thripidae) at a high temperature. Appl Entomol Zool 51(3):441–444

    CAS  Google Scholar 

  • Morishita M (2005) Seasonal abundance of the western flower thrips, Flankliniella occidentalis (Pergande), and onion thrips, Thrips tabaci (Lindeman) (Thysanoptera: Thripidae), on weeds in persimmon [Diospyros kaki] and mandarin orange orchards. Jpn J Appl Entomol Zool 49(4):195–203

    Google Scholar 

  • Morse JG, Hoddle MS (2006) Invasion biology of thrips. Ann Rev Entomol 51(1):67–89

    CAS  Google Scholar 

  • Mouden S, Sarmiento KF, Klinkhamer PG, Leiss KA (2017) Integrated pest management in western flower thrips: past, present and future. Pest Manag Sci 73(5):813–822

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mound LA (1997) Biological diversity. In: Lewis T (ed) Thrips as crop pests. CAB International, New York, pp 197–215

    Google Scholar 

  • Mound LA (2005) Thysanoptera: diversity and interactions. Ann Rev Entomol 50:247–269

    CAS  Google Scholar 

  • Murai T (2001) Development and reproductive capacity of Thrips hawaiiensis (Thysanoptera: Thripidae) and its potential as a major pest. Bull Entomol Res 91(3):193–198

    CAS  PubMed  Google Scholar 

  • Nakahara S (1997) Annotated list of the Frankliniella species of the world. Contrib Entomol 2(4):355–389

    Google Scholar 

  • Nakahara S, Foottit RG (2007) Frankliniella intonsa (Trybom) (Thysanoptera: Thripidae), an invasive insect in North America. Proc Entomol Soc Wash 109(3):733–734

    Google Scholar 

  • Nakao S, Chikamori C, Okajima S, Narai Y, Murai T (2011) A new record of the tobacco thrips Frankliniella fusca (Hinds) (Thysanoptera: Thripidae) from Japan. Appl Entomol Zool 46(2):131–134

    Google Scholar 

  • Natwick ET, Byers JA, Chu CC, Lopez M, Henneberry TJ (2007) Early detection and mass trapping of Frankliniella occidentalis and Thrips tabaci in vegetable crops. Southwest Entomol 32(4):229–238

    Google Scholar 

  • Northfield TD (2005) Thrips competition and spatiotemporal dynamics on reproductive hosts. Masters dissertation, University of Florida, Gainesville

  • Northfield TD, Paini DR, Funderburk JE, Reitz SR (2008) Annual cycles of Frankliniella spp. (Thysanoptera: Thripidae) thrips abundance on north Florida uncultivated reproductive hosts: predicting possible sources of pest outbreaks. Ann Entomol Soc Am 101(4):769–778

    Google Scholar 

  • Northfield TD, Paini DR, Reitz SR, Funderburk JE (2011) Within plant interspecific competition does not limit the highly invasive thrips, Frankliniella occidentalis in Florida. Ecol Entomol 36(2):181–187

    Google Scholar 

  • Paini DR, Funderburk JE, Reitz SR (2008) Competitive exclusion of a worldwide invasive pest by a native. Quantifying competition between two phytophagous insects on two host plant species. J Anim Ecol 77(1):184–190

    PubMed  Google Scholar 

  • Palmer JM (1990) Identification of the common thrips of tropical Africa (Thysanoptera: Insecta). Int J Pest Manag 36(1):27–49

    Google Scholar 

  • Qian L, Chen FJ, Liu JN, He SQ, Liu JY, Li ZY, Gui FR (2017) Effects of elevated CO2 on life-history traits of three successive generations of Frankliniella occidentalis and F. intonsa on kidney bean, Phaseolus vulgaris. Entomol Exp Appl 165(1):50–61

    CAS  Google Scholar 

  • Reay-Jones FP, Greene JK, Herbert DA, Jacobson AL, Kennedy GG, Reisig DD, Roberts PM (2017) Within-plant distribution and dynamics of thrips species (Thysanoptera: Thripidae) in Cotton. J Econ Entomol 110(4):1563–1575

    PubMed  Google Scholar 

  • Reitz SR (2002) Seasonal and within plant distribution of Frankliniella thrips (Thysanoptera: Thripidae) in north Florida tomatoes. Fla Entomol 85(3):431–439

    Google Scholar 

  • Reitz SR (2008) Comparative bionomics of Frankliniella occidentalis and Frankliniella tritici. Fla Entomol 91(3):474–476

    Google Scholar 

  • Reitz SR (2009) Biology and ecology of the western flower thrips (Thysanoptera: Thripidae): the making of a pest. Fla Entomol 92:7–13

    Google Scholar 

  • Reitz SR, Trumble JT (2002) Competitive displacement among insects and arachnids. Ann Rev Entomol 47:435–465

    CAS  Google Scholar 

  • Reitz SR, Gao YL, Lei ZR (2011) Thrips: pests of concern to China and the United States. Agric Sci China 10:867–892

    Google Scholar 

  • Reitz SR, Gao YL, Kirk WDJ, Hoddle MS, Leiss KA, Funderburk JE (2019) Invasion biology, ecology, and management of western flower thrips. Ann Rev Entomol 65:1. https://doi.org/10.1146/annurev-ento-011019-024947

    Article  CAS  Google Scholar 

  • Riley DG, Chitturi A, Sparks AN (2007) Does natural deposition of pine pollen affect the ovipositional behavior of Frankliniella occidentalis and Frankliniella fusca? Entomol Exp Appl 124(2):133–141

    Google Scholar 

  • Rosenheim JA, Welter SC, Johnson MW, Mau RF, Gusukuma-Minuto LR (1990) Direct feeding damage on cucumber by mixed-species infestations of Thrips palmi and Frankliniella occidentalis (Thysanoptera: Thripidae). J Econ Entomol 83(4):1519–1525

    Google Scholar 

  • Srivastava M, Funderburk J, Olson S, Demirozer O, Reitz S (2014) Impacts on natural enemies and competitor thrips of insecticides against the western flower thrips (Thysanoptera: Thripidae) in fruiting vegetables. Fla Entomol 97(2):337–348

    Google Scholar 

  • Sedy KA, Koschier EH (2003) Bioactivity of carvacrol and thymol against Frankliniella occidentalis and Thrips tabaci. J Appl Entomol 127(6):313–316

    CAS  Google Scholar 

  • Silva R, Hereward JP, Walter GH, Wilson LJ, Furlong MJ (2018) Seasonal abundance of cotton thrips (Thysanoptera: Thripidae) across crop and non-crop vegetation in an Australian cotton producing region. Agric Ecosyst Environ 256:226–238

    Google Scholar 

  • Smith RM, Cuthbertson AG, Walters KF (2005) Note: extrapolating the use of an entomopathogenic nematode and fungus as control agents for Frankliniella occidentalis to Thrips palmi. Phytoparasitica 33(5):436

    Google Scholar 

  • Stewart JW, Cole C, Lummus P (1989) Winter survey of thrips (Thysanoptera: Thripidae) from certain suspected and confirmed hosts of tomato spotted wilt virus in South Texas. J Entomol Sci 24(3):392–401

    Google Scholar 

  • Su J, Guo YL, Ma XG, Wang JL (2012) The comparison of drug resistance between western flower thrips (WFT) and Thrips tabaci. In: Chen S, Liu Z-T, Zeng Q (eds) Advanced materials research, vol 554. Trans Tech Publications, Zurich, pp 1812–1815

    Google Scholar 

  • Ullah MS, Lim UT (2015) Life history characteristics of Frankliniella occidentalis and Frankliniella intonsa (Thysanoptera: Thripidae) in constant and fluctuating temperatures. J Econ Entomol 108(3):1000–1009

    PubMed  Google Scholar 

  • van Rijn PC, Mollema C, Steenhuis-Broers GM (1995) Comparative life history studies of Frankliniella occidentalis and Thrips tabaci (Thysanoptera: Thripidae) on cucumber. Bull Entomol Res 85(2):285–297

    Google Scholar 

  • Vierbergen G, Mantel WP (1991) Contribution to the knowledge of Frankliniella schultzei (Thysanoptera: Thripidae). Entomol Ber 51(1):7–12

    Google Scholar 

  • Wang JL, Li HG, Ma ZG, Zheng CY (2011a) Interspecific competition between Frankliniella occidentalis and Thrips tabaci on purple cabbage. Sci Agric Sin 44(24):5006–5012

    Google Scholar 

  • Wang JL, Wang JP, Zheng CY (2011b) Comparative study on some biological characteristics of Frankiniella occidentalis and Thrips tabaci. Chin J Appl Entomol 48(3):513–517

    Google Scholar 

  • Wang LL, Li HG, Zhang FF, Zheng CY (2013) The effect of extreme temperature on development and reproduction of Frankliniella occidentalis and Thrips tabaci. J Qingdao Agric Univ 30(4):272–276

    Google Scholar 

  • Wang H, Xue JP, Liu L, Chen ZX, Li ZY, Zhang HR (2014a) Species of thrips and seasonal population dynamics of western flower thrips on chrysanthemum seedling. J Yunnan Agric Univ 29(4):494–499

    Google Scholar 

  • Wang JC, Zhang B, Wang JP, Li HG, Wang SF, Sun LJ, Zheng CY (2014b) Effects of heat stress on survival of Frankliniella occidentalis (Thysanoptera: Thripidae) and Thrips tabaci (Thysanoptera: Thripidae). J Econ Entomol 107(4):1426–1433

    CAS  PubMed  Google Scholar 

  • Wang HH, Kennedy GG, Reay-Jones FP, Reisig DD, Toews MD, Roberts PM, Herbert DA Jr, Tayor S, Jacobson AL, Greene JK (2018) Molecular identification of thrips species infesting cotton in the Southeastern United States. J Econ Entomol 111(2):892–898

    CAS  PubMed  Google Scholar 

  • Wells ML, Culbreath AK, Todd JW, Csinos AS, Mandal B, McPherson RM (2002) Dynamics of spring tobacco thrips (Thysanoptera: Thripidae) populations: implications for tomato spotted wilt virus management. Environ Entomol 31(6):1282–1290

    Google Scholar 

  • Welter SC, Rosenheim JA, Johnson MW, Mau RFL, Gusukuma-Minuto LR (1990) Effects of Thrips palmi and western flower thrips (Thysanoptera: Thripidae) on the yield, growth, and carbon allocation pattern in cucumbers. J Econ Entomol 83(5):2092–2101

    Google Scholar 

  • Wimmer D, Hoffmann D, Schausberger P (2008) Prey suitability of western flower thrips, Frankliniella occidentalis, and onion thrips, Thrips tabaci, for the predatory mite Amblyseius swirskii. Biocontrol Sci Technol 18(6):533–542

    Google Scholar 

  • Wilson LJ, Bauer LR (1993) Species composition and seasonal abundance of thrips (Thysanoptera) on cotton in the Namoi Valley. J Aust Entomol Soc 32:187–192

    Google Scholar 

  • Wu QJ, Xu BY, Zhang ZJ, Zhang YJ, Zhu GR (2007) The types and distribution of thrips in Beijing, Zhejiang and Yunnan. China China Plant Prot 27(1):32–34

    CAS  Google Scholar 

  • Wu SY, Tang LD, Zhang XR, Xing ZL, Lei ZR, Gao YL (2018) A decade of a thrips invasion in china: lessons learned. Ecotoxicology 27:1032–1038

    CAS  PubMed  Google Scholar 

  • Yuan CM, Zhi JR, Li JZ, Zhang Y (2008) Investigation on the species of thrips in field of vegetable in Guizhou Province. China Plant Prot 28(7):8–11

    Google Scholar 

  • Zhao MF, Ho HH, Wu YX, He YQ, Li MJ (2014) Western flower thrips (Frankliniella occidentalis) transmits Maize chlorotic mottle virus. J Phytopathol 162:532–536

    CAS  Google Scholar 

  • Zhao XY, Reitz SR, Yuan HG, Lei ZR, Paini DR, Gao YL (2017) Pesticide-mediated interspecific competition between local and invasive thrips pests. Sci Rep 7:40512

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang ZK, Wu SY, Lei ZR, Kang PZ, Du YN, Zhang LR (2019) Population competition and occurrence trend of Frankliniella occidentalis and Frankliniella intonsa on Yinchuan greenhouse pepper. Plant Quar 33(5):13–17

    Google Scholar 

  • Zheng YP, Li F, Hao LH, Yu JJ, Guo LL, Zhou HR, Ma C, Zhang XX, Xu M (2019) Elevated CO2 concentration induces photosynthetic down-regulation with changes in leaf structure, non-structural carbohydrates and nitrogen content of soybean. BMC Plant Biol 19:255

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr. Cecil L. Smith (University of Georgia, USA) for helping with the language editing. This work was supported by the National key Research and Developments (R&D) plan (Grant Nos. 2016YFD0201002, 2017YFD0200900, 2018YFD0200802) and the China Agriculture Research System (CARS-23-D-08).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yulin Gao.

Additional information

Communicated by S. Reitz.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Special Issue on novel management tactics for the Western Flower Thrips.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, S., Xing, Z., Ma, T. et al. Competitive interaction between Frankliniella occidentalis and locally present thrips species: a global review. J Pest Sci 94, 5–16 (2021). https://doi.org/10.1007/s10340-020-01212-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10340-020-01212-y

Keyword

Navigation