Adrion JR, Kousathanas A, Pascual M, Burrack HJ, Haddad NM, Bergland AO, Machado H, Sackton TB, Schlenke TA, Watada M, Wegmann D, Singh ND (2014) Drosophila suzukii: the genetic footprint of a recent, worldwide invasion. Mol Biol Evol 31:3148–3163. https://doi.org/10.1093/molbev/msu246
Article
PubMed
PubMed Central
Google Scholar
Alexa A, Rahnenführer J, Lengauer T (2006) Improved scoring of functional groups from gene expression data by decorrelating GO graph structure. Bioinformatics 22:1600–1607. https://doi.org/10.1093/bioinformatics/btl140
CAS
Article
PubMed
Google Scholar
Asgari S, Rivers DB (2011) Venom proteins from endoparasitoid wasps and their role in host-parasite interactions. Ann Rev Entomol 56:313–335. https://doi.org/10.1146/annurev-ento-120709-144849
CAS
Article
Google Scholar
Asplen MK, Anfora G, Biondi A, Choi DS, Chu D, Daane KM, Gibert P, Gutierrez AP, Hoelmer KA, Hutchison WD, Isaacs R, Jiang ZL, Kárpáti Z, Kimura MT, Pascual M, Philips CR, Plantamp C, Ponti L, Vétek G, Vogt H, Walton VM, Yu Y, Zappalá L, Desneux N (2015) Invasion biology of spotted wing drosophila (Drosophila suzukii): a global perspective and future priorities. J Pest Sci 88:469–494. https://doi.org/10.1007/s10340-015-0681-z
Article
Google Scholar
Bastian F, Parmentier G, Roux J, Moretti S, Laudet V, Robinson-Rechavi M (2008) Bgee: integrating and comparing heterogeneous transcriptome data among species. In: Lecture notes in computer science, Springer, Berlin, pp 124–131. https://doi.org/10.1007/978-3-540-69828-9_12
Birch LC (1948) The intrinsic rate of natural increase of an insect population. J Anim Ecol 17:15. https://doi.org/10.2307/1605
Article
Google Scholar
Carton Y, Nappi AJ, Poirie M (2005) Genetics of anti-parasite resistance in invertebrates. Develop Comp Immunol 29:9–32. https://doi.org/10.1016/j.dci.2004.05.004
CAS
Article
Google Scholar
Cattel J, Kaur R, Gibert P, Martinez J, Fraimout A, Jiggins F, Andrieux T, Siozios S, Anfora G, Miller W, Rota-Stabelli O, Mouton L (2016a) Wolbachia in European populations of the invasive pest Drosophila suzukii: regional variation in infection frequencies. PLoS ONE 11:e0147766. https://doi.org/10.1371/journal.pone.0147766
CAS
Article
PubMed
PubMed Central
Google Scholar
Cattel J, Martinez J, Jiggins F, Mouton L, Gibert P (2016b) Wolbachia-mediated protection against viruses in the invasive pest Drosophila Suzukii. Insect Mol Biol 25:595–603. https://doi.org/10.1111/imb.12245
CAS
Article
PubMed
Google Scholar
Cattel J, Nikolouli K, Andrieux T, Martinez J, Jiggins F, Charlat S, Vavre F, Lejon D, Gibert P, Mouton L (2018) Back and forth Wolbachia transfers reveal efficient strains to control spotted wing drosophila populations. J Appl Ecol 55:2408–2418. https://doi.org/10.1111/1365-2664.13101
Article
Google Scholar
Cesari M, Maistrello L, Ganzerli F, Dioli P, Rebecchi L, Guidetti R (2014) A pest alien invasion in progress: potential pathways of origin of the brown marmorated stink bug Halyomorpha halys populations in Italy. J Pest Sci 88:1–7. https://doi.org/10.1007/s10340-014-0634-y
Article
Google Scholar
Chabert S, Allemand R, Poyet M, Eslin P, Gibert P (2012) Ability of European parasitoids (Hymenoptera) to control a new invasive Asiatic pest, Drosophila suzukii. Biol Control 63:40–47. https://doi.org/10.1016/j.biocontrol.2012.05.005
Article
Google Scholar
Chiu JC, Jiang X, Zhao L et al (2013) Genome of Drosophila suzukii, the spotted wing drosophila. G3 Genes Genomes Genet 3:2257–2271. https://doi.org/10.1534/g3.113.008185
CAS
Article
Google Scholar
Cini A, Ioriatti C, Anfora G (2012) A review of the invasion of Drosophila suzukii in Europe and a draft research agenda for integrated pest management. Bull Insectol 65:149–160
Google Scholar
Clemente M, Fusco G, Tonina L, Giomi F (2018) Temperature-induced phenotypic plasticity in the ovipositor of the invasive species Drosophila suzukii. J Thermal Biol 75:62–68. https://doi.org/10.1016/j.jtherbio.2018.05.001
Article
Google Scholar
Colinet D, Deleury E, Anselme C, Cazes D, Poulain J, Azema-Dossat C, Belghazi M, Gatti JL, Poirié M (2013) Extensive inter- and intraspecific venom variation in closely related parasites targeting the same host: the case of Leptopilina parasitoids of Drosophila. Insect Biochem Mol 43:601–611. https://doi.org/10.1016/j.ibmb.2013.03.010
CAS
Article
Google Scholar
Daane KM, Wang X, Biondi A, Miller B, Miller JC, Riedl H, Shearer PW, Guerrieri E, Giorgini M, Buffington M, van Achterberg K, Song Y, Kang T, Yi H, Jung C, Lee DW, Chung BK, Hoelmer KA, Walton VM (2016) First exploration of parasitoids of Drosophila suzukii in South Korea as potential classical biological agents. J Pest Sci 89:823–835. https://doi.org/10.1007/s10340-016-0740-0
Article
Google Scholar
Dlugosch KM, Parker IM (2008) Founding events in species invasions: genetic variation, adaptive evolution, and the role of multiple introductions. Mol Ecol 17:431–449. https://doi.org/10.1111/j.1365-294x.2007.03538.x
CAS
Article
PubMed
Google Scholar
Estoup A, Ravigné V, Hufbauer R, Vitalis R, Gautier M, Facon B (2016) Is There a Genetic Paradox of Biological Invasion? Ann Rev Ecol Syst 47:51–72. https://doi.org/10.1146/annurev-ecolsys-121415-032116
Article
Google Scholar
Fraimout A, Debat V, Fellous S et al (2017) Deciphering the routes of invasion of Drosophila suzukii by means of ABC random forest. Mol Biol Evol. https://doi.org/10.1093/molbev/msx050
Article
PubMed
PubMed Central
Google Scholar
Fraimout A, Jacquemart P, Villarroel B, Aponte DJ, Decamps T, Herrel A, Cornette R, Debat V (2018) Phenotypic plasticity of Drosophila suzukii wing to developmental temperature: implications for flight. J Exp Biol. https://doi.org/10.1242/jeb.166868
Article
PubMed
Google Scholar
Gatti J, Schmitz A, Colinet D, Poirié M (2012) Diversity of virus-like particles in parasitoids’ venom. In: Parasitoid viruses, Elsevier, Amsterdam, pp 181–192. https://doi.org/10.1016/b978-0-12-384858-1.00015-1
Hauser M (2011) A historic account of the invasion of Drosophila suzukii (Matsumura) (Diptera: Drosophilidae) in the continental United States, with remarks on their identification. Pest Manag Sci 67:1352–1357. https://doi.org/10.1002/ps.2265
CAS
Article
PubMed
Google Scholar
Haye T, Girod P, Cuthbertson AGS, Wang XG, Daane KM, Hoelmer KA, Baroffio C, Zhang JP, Desneux N (2016) Current SWD IPM tactics and their practical implementation in fruit crops across different regions around the world. J Pest Science 89:643–651. https://doi.org/10.1007/s10340-016-0737-8
Article
Google Scholar
Hickner PV, Rivaldi CL, Johnson CM, Siddappaji M, Raster GJ, Syed Z (2016) The making of a pest: insights from the evolution of chemosensory receptor families in a pestiferous and invasive fly, Drosophila suzukii. BMC Genom. https://doi.org/10.1186/s12864-016-2983-9
Article
Google Scholar
Jombart T (2008) Adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24(11):1403–1405
CAS
Article
Google Scholar
Jombart T, Devillard S, Balloux F (2010) Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet 11:94. https://doi.org/10.1186/1471-2156-11-94
Article
PubMed
PubMed Central
Google Scholar
Kacsoh BZ, Schlenke TA (2012) High hemocyte load is associated with increased resistance against parasitoids in Drosophila suzukii, a relative of D. melanogaster. PLoS ONE 7:e34721. https://doi.org/10.1371/journal.pone.0034721
CAS
Article
PubMed
PubMed Central
Google Scholar
Kanno Y, Vokoun JC, Letcher BH (2011) Fine-scale population structure and riverscape genetics of brook trout (Salvelinus fontinalis) distributed continuously along headwater channel networks. Mol Ecol 20:3711–3729
Article
Google Scholar
Kaur R, Siozios S, Miller WJ, Rota-Stabelli O (2017) Insertion sequence polymorphism and genomic rearrangements uncover hidden Wolbachia diversity in Drosophila suzukii and D. subpulchrella. Sci Rep UK. https://doi.org/10.1038/s41598-017-13808-z
Article
Google Scholar
Keightley PD, Ness RW, Halligan DL, Haddrill PR (2013) Estimation of the spontaneous mutation rate per nucleotide site in a Drosophila melanogaster full-sib family. Genetics 196:313–320. https://doi.org/10.1534/genetics.113.158758
CAS
Article
PubMed
PubMed Central
Google Scholar
Komljenovic A, Roux J, Wollbrett J, Robinson-Rechavi M, Bastian FB (2018) BgeeDB, an R package for retrieval of curated expression datasets and for gene list expression localization enrichment tests. F1000Research 5:2748. https://doi.org/10.12688/f1000research.9973.2
Article
PubMed Central
Google Scholar
Kraaijeveld AR, Godfray HCJ (2003) Potential life-history costs of parasitoid avoidance in Drosophila melanogaster. Evol Ecol Res 5:1251–1261
Google Scholar
Lee CE (2002) Evolutionary genetics of invasive species. Trends Ecol Evol 17:386–391. https://doi.org/10.1016/s0169-5347(02)02554-5
Article
Google Scholar
Li X, Schuler MA, Berenbaum MR (2007) Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics. Ann Rev Entomol 52:231–253. https://doi.org/10.1146/annurev.ento.51.110104.151104
CAS
Article
Google Scholar
Miller B, Anfora G, Buffington M, Daane KM, Dalton DT, Hoelmer KM, Rossi Stacconi MV, Grassi A, Ioriatti C, Loni A, Miller JC, Ouantar M, Wang X, Wiman NG, Walton VM (2015) Seasonal occurrence of resident parasitoids associated with Drosophila suzukii in two small fruit production regions of Italy and the USA. Bull Insectol 68(2):255–263
Google Scholar
Mitsui H, Beppu K, Kimura MT (2010) Seasonal life cycles and resource uses of flower- and fruit-feeding drosophilid flies (Diptera: Drosophilidae) in central Japan. Entomol Sci 13:60–67. https://doi.org/10.1111/j.1479-8298.2010.00372.x
Article
Google Scholar
Ometto L, Cestaro A, Ramasamy S et al (2013) Linking genomics and ecology to investigate the complex evolution of an invasive Drosophila pest. Genome Biol Evol 5:745–757. https://doi.org/10.1093/gbe/evt034
CAS
Article
PubMed
PubMed Central
Google Scholar
Pajač Živković I, Lemic D, Mešić A, Barić B, Órdenes R, Benítez HA (2018) Effect of fruit host on wing morphology in Drosophila suzukii (Diptera: Drosophilidae): A first view using geometric morphometrics. Entomol Res 48:262–268. https://doi.org/10.1111/1748-5967.12278
Article
Google Scholar
Ramasamy S, Ometto L, Crava MC et al (2016) The evolution of olfactory gene families in Drosophila and the genomic basis of chemical-ecological adaptation in Drosophila suzukii. Genome Biol Evol 8:2297–2311. https://doi.org/10.1093/gbe/evw160
Article
PubMed
PubMed Central
Google Scholar
Reichard M, Douda K, Przybyłski M, Popa OP, Karbanová E, Matasová K, Smith C (2015) Population-specific responses to an invasive species. P R Soc B-Biol Sci 282:1063
Google Scholar
Rius M, Darling JA (2014) How important is intraspecific genetic admixture to the success of colonising populations? Trends Ecol Evol 29:233–242. https://doi.org/10.1016/j.tree.2014.02.003
Article
PubMed
Google Scholar
Rivero A, Vézilier J, Weill M, Read AF, Gandon S (2010) Insecticide control of vector-borne diseases: When is insecticide resistance a problem? PLoS Pathogens 6:e1001000. https://doi.org/10.1371/journal.ppat.1001000
CAS
Article
PubMed
PubMed Central
Google Scholar
Rossi Stacconi MV, Kaur R, Mazzoni V, Ometto L, Grassi A, Gottardello A, Rota-Stabelli O, Anfora G (2016) Multiple lines of evidence for reproductive winter diapause in the invasive pest Drosophila suzukii: useful clues for control strategies. J Pest Sci 89:689–700. https://doi.org/10.1007/s10340-016-0753-8
Article
Google Scholar
Rossi Stacconi MV, Panel A, Baser N, Ioriatti C, Pantezzi T, Anfora G (2017) Comparative life history traits of indigenous Italian parasitoids of Drosophila suzukii and their effectiveness at different temperatures. Biol Control 112:20–27. https://doi.org/10.1016/j.biocontrol.2017.06.003
Article
Google Scholar
Rossi Stacconi MV, Amiresmaeili N, Biondi A et al (2018) Host location and dispersal ability of the cosmopolitan parasitoid Trichopria drosophilae released to control the invasive spotted wing Drosophila. Biol Control 117:188–196. https://doi.org/10.1016/j.biocontrol.2017.11.013
Article
Google Scholar
Rota-Stabelli O, Daley AC, Pisani D (2013) Molecular timetrees reveal a Cambrian colonization of land and a new scenario for ecdysozoan evolution. Curr Biol 23:392–398. https://doi.org/10.1016/j.cub.2013.01.026
CAS
Article
PubMed
Google Scholar
Shearer PW, West JD, Walton VM, Brown PH, Svetec N, Chiu JC (2016) Seasonal cues induce phenotypic plasticity of Drosophila suzukii to enhance winter survival. BMC Ecol 16(1):11
Article
Google Scholar
Silva AX, Jander G, Samaniego H, Ramsey JS, Figueroa CC (2012) Insecticide resistance mechanisms in the green peach aphid Myzus persicae (Hemiptera: Aphididae) I: A transcriptomic survey. PLoS ONE 7:e36366. https://doi.org/10.1371/journal.pone.0036366
CAS
Article
PubMed
PubMed Central
Google Scholar
Strand MR (2012) Polydnavirus gene products that interact with the host immune system. In: Parasitoid viruses, Elsevier, Amsterdam, pp 149–161. https://doi.org/10.1016/b978-0-12-384858-1.00012-6
Tait G, Grassi A, Pfab F et al (2018) Large-scale spatial dynamics of Drosophila suzukii in Trentino, Italy. J Pest Sci 91:1213–1224. https://doi.org/10.1007/s10340-018-0985-x
Article
Google Scholar
Tochen S, Dalton DT, Wiman N, Hamm C, Shearer PW, Walton VM (2014) Temperature-related development and population parameters for Drosophila suzukii (Diptera: Drosophilidae) on cherry and blueberry. Environ Entomol 43:501–510. https://doi.org/10.1603/en13200
Article
PubMed
Google Scholar
Van Damme V, Berkvens N, Moerkens R, Berckmoes E, Wittemans L, De Vis R, Casteels H, Tirry L, De Clercq P (2014) Overwintering potential of the invasive leafminer Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) as a pest in greenhouse tomato production in Western Europe. J Pest Sci 88:533–541. https://doi.org/10.1007/s10340-014-0636-9
Article
Google Scholar
Wiman NG, Dalton DT, Anfora G, Biondi A, Chiu JC, Daane KM, Gerdeman B, Gottardello A, Hamby KA, Isaacs R, Grassi A, Ioriatti C, Lee JC, Miller B, Rossi Stacconi MV, Shearer PW, Tanigoshi L, Wang X, Walton VM (2016) Drosophila suzukii population response to environment and management strategies. J Pest Sci 89:653–665
Article
Google Scholar
Yang Z (1998) Likelihood ratio tests for detecting positive selection and application to primate lysozyme evolution. Mol Biol Evol 15:568–573. https://doi.org/10.1093/oxfordjournals.molbev.a025957
CAS
Article
PubMed
Google Scholar
Yang Z (2007) PAML 4: Phylogenetic analysis by maximum likelihood. Mol Biol Evol 24:1586–1591. https://doi.org/10.1093/molbev/msm088
CAS
Article
PubMed
Google Scholar
Yang Z, Nielsen R (2000) Estimating synonymous and nonsynonymous substitution rates under realistic evolutionary models. Mol Biol Evol 17:32–43. https://doi.org/10.1093/oxfordjournals.molbev.a026236
CAS
Article
PubMed
Google Scholar
Yang Z, Nielsen R, Goldman N, Krabbe Pedersen AM (2000) Codon-substitution models for heterogeneous selection pressure at amino acid sites. Genetics 155:431–449
CAS
PubMed
PubMed Central
Google Scholar
Zalewski A, Zalewska H, Lunneryd SG, André C, Mikusiński G (2016) Reduced genetic diversity and increased structure in American mink on the Swedish coast following invasive species control. PLoS ONE 11(6):e0157972
Article
Google Scholar