Skip to main content
Log in

Testing the shifting defense hypothesis for constitutive and induced resistance and tolerance

  • Original Paper
  • Published:
Journal of Pest Science Aims and scope Submit manuscript

Abstract

Biogeographical variation in herbivore communities may drive invasive plants to evolve lower defense against specialist herbivores but higher defense against generalist herbivores (shifting defense hypothesis, SDH). However, empirical tests on this topic have been strongly biased toward examining constitutive resistance and less is known about the evolution of induced resistance and tolerance. We examined constitutive and induced resistance and tolerance of the invasive plant, Alternanthera philoxeroides (alligator weed, Centrospermae: Amaranthaceae) against the specialist herbivore Agasicles hygrophila (Coleoptera, Chrysomelidae) and the generalist herbivore Spodoptera litura (Lepidoptera, Noctuidae), using genotypes from its introduced and native ranges. We found that introduced genotypes, compared to native genotypes, had higher constitutive resistance to the generalist herbivore, but similar constitutive resistance to the specialist herbivore. Furthermore, introduced genotypes, compared to native genotypes, had lower induced resistance to the generalist herbivore, but similar induced resistance to the specialist herbivore. Moreover, although introduced and native genotypes did not differ in their tolerance to the generalist, the introduced genotypes exhibited lower tolerance to the specialist than native ones. Therefore, while individual defense strategy does not indicate a shift from defense against the specialist to defense against the generalist, the results for the different defense strategies jointly support the SDH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

Download references

Acknowledgements

The work was supported by the National Key Research and Development Program of China (2017YFC1200100) and National Natural Science Foundation of China (Grant No. 41771053). We thank Dana Blumenthal (USDA-ARS Rangeland Resources Research Unit, Fort Collins, CO) for the critical reading of the manuscript and the valuable comments. We also thank Alejandro Sosa (The Foundation for the Study of Invasive Species, Spanish acronym: FuEDEI) for providing clones of the Argentinian plant genotypes. We are also grateful to Xiang Liu, Youzheng Zhang, and other members of IBSFU for their assistance in conducting the glasshouse experiment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyun Pan.

Additional information

Communicated by J.J. Duan.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1037 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, M., Pan, X., Zhang, Z. et al. Testing the shifting defense hypothesis for constitutive and induced resistance and tolerance. J Pest Sci 93, 355–364 (2020). https://doi.org/10.1007/s10340-019-01162-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10340-019-01162-0

Keywords

Navigation