Reduced phytophagy in sugar-provisioned mirids

Abstract

Zoophytophagous mirids (Hemiptera: Miridae) are one of the most studied and successful group of natural enemies used as biological control agents in horticultural crops. When prey is scarce, some species, such as Nesidiocoris tenuis (Reuter), may damage plant tissue by increasing feeding on vegetative and reproductive organs. Despite the importance of mirids, the provision of a sugar source as an alternative or complement to plant feeding has never been addressed to reduce mirid phytophagy. Here, we analyzed the nutritional status and phytophagy of N. tenuis in the presence of tomato plants with and without sugar dispensers. Our study demonstrated how nymphs and adults obtained carbohydrates when fed on tomato plants. Phytophagy was reduced more than twofold with the provision of sugar dispensers. Both nymphs and adults contained higher carbohydrate levels when they had access to plants with sugar dispensers than without. Nymphs, which are generally responsible for more serious plant damage, had a higher content of carbohydrates than adults independently of the diet provided. Our findings contribute not only to improve the use of zoophytophagous predators as biological control agents, but also to understand the nutritional ecology of the Miridae, a group with a very diverse diet.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Arnó J, Castañé C, Riudavets J, Gabarra R (2006) Characterization of damage to tomato plants produced by the zoophytophagous predator Nesidiocoris tenuis. IOBC WPRS Bull 29(4):249.

    Google Scholar 

  2. Arnó J, Castañé C, Riudavets J, Gabarra R (2010) Risk of damage to tomato crops by the generalist zoophytophagous predator Nesidiocoris tenuis (Reuter) (Hemiptera: Miridae). Bull Entomol Res 100:105–115. https://doi.org/10.1017/S0007485309006841

    Article  CAS  PubMed  Google Scholar 

  3. Biondi A, Zappalà L, Di Mauro A et al (2016) Can alternative host plant and prey affect phytophagy and biological control by the zoophytophagous mirid Nesidiocoris tenuis? Biocontrol 61:79–90. https://doi.org/10.1007/s10526-015-9700-5

    Article  Google Scholar 

  4. Bueno V, van Lenteren JC, Lins JC et al (2013) New records of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) predation by Brazilian Hemipteran predatory bugs. J Appl Entomol 137:29–34. https://doi.org/10.1111/jen.12017

    Article  Google Scholar 

  5. Calvo J, Bolckmans K, Stansly PA, Urbaneja A (2009) Predation by Nesidiocoris tenuis on Bemisia tabaci and injury to tomato. Biocontrol 54:237–246. https://doi.org/10.1007/s10526-008-9164-y

    Article  Google Scholar 

  6. Calvo J, Bolckmans K, Belda JE (2012) Release rate for a pre-plant application of Nesidiocoris tenuis for Bemisia tabaci control in tomato. Biocontrol 57:809–817. https://doi.org/10.1007/s10526-012-9455-1

    Article  Google Scholar 

  7. Cassis G, Schuh RT (2012) Systematics, Biodiversity, Biogeography, and Host Associations of the Miridae (Insecta: Hemiptera: Heteroptera: Cimicomorpha). Annu Rev Entomol 57:377–404. https://doi.org/10.1146/annurev-ento-121510-133533

    Article  CAS  PubMed  Google Scholar 

  8. Castañé C, Zapata R (2005) Rearing the predatory bug Macrolophus caliginosus on a meat-based diet. Biol Control 34:66–72. https://doi.org/10.1016/j.biocontrol.2005.04.002

    Article  Google Scholar 

  9. Castañé C, Arnó J, Gabarra R, Alomar O (2011) Plant damage to vegetable crops by zoophytophagous mirid predators. Biol Control 59:22–29. https://doi.org/10.1016/j.biocontrol.2011.03.007

    Article  Google Scholar 

  10. Cohen AC (1990) Feeding adaptations of some predaceous Hemiptera. Ann Entomol Soc Am 83:1215–1223. https://doi.org/10.1093/aesa/83.6.1215

    Article  Google Scholar 

  11. Coll M (1998) Living and feeding on plants in predatory Heteroptera. In: Coll M, Ruberson J (eds) Predatory Heteroptera: their ecology and use in biological control. Entomological Society of America, Lanham, pp 89–129

    Google Scholar 

  12. Crawley M (2007) The R book. Wiley, Chivhester

    Book  Google Scholar 

  13. Dreyer BS, Neuenschwander P, Baumgartner J, Dorn S (1997) Trophic influences on survival, development and reproduction of Hyperaspis notata (Col., Coccinellidae). J Appl Entomol Fur Angew Entomol 121:249–256. https://doi.org/10.1111/j.1439-0418.1997.tb01401.x

    Article  Google Scholar 

  14. Evans EW, Swallow JG (1993) Numerical responses of natural enemies to artificial honeydew in Utah alfalfa. Environ Entomol 22:1392–1401. https://doi.org/10.1093/ee/22.6.1392

    Article  Google Scholar 

  15. Foray V, Pelisson PF, Bel-Venner MC et al (2012) A handbook for uncovering the complete energetic budget in insects: the van Handel’s method (1985) revisited. Physiol Entomol 37:295–302. https://doi.org/10.1111/j.1365-3032.2012.00831.x

    Article  Google Scholar 

  16. Gillespie DR, Mcgregor RR (2000) The functions of plant feeding in the omnivorous predator Dicyphus hesperus: water places limits on predation. Ecol Entomol 25:380–386. https://doi.org/10.1046/j.1365-2311.2000.00285.x

    Article  Google Scholar 

  17. González-Cabrera J, Monton H, Molla O, Urbaneja A (2011) Efficacy of Bacillus thuringiensis (Berliner) in controlling the tomato borer, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). Biocontrol 57:71–80. https://doi.org/10.1007/s10526-010-9310-1

    Article  Google Scholar 

  18. Gurr G, Wratten SD, Tylianakis J et al (2005) Providing plant foods for natural enemies in farming systems: balancing practicalities and theory. In: Wäckers F, van Rijn PCJ, Bruin J (eds) Plant-provided Food for Carnivorous Insects: A Protective Mutualism and its Applications., pp 267–304

    Google Scholar 

  19. Gurr G, Wratten SD, Landis DA, You M (2017) Habitat management to suppress pest populations: progress and prospects. Annu Rev Entomol 62:62–91. https://doi.org/10.1146/annurev-ento-031616-035050

    Article  CAS  Google Scholar 

  20. Heimpel G, Jervis M (2005) Does floral nectar improve biological control by parasitoids? In: Wäckers F, Bruin J, van Rijn PJ (eds) Plant-provided food and plant-carnivore mutualism. Cambridge University Press, Cambridge, pp 267–304

    Google Scholar 

  21. Igarashi K, Nomura M, Narita S (2013) Application of a powdered artificial diet to promote the establishment of the predatory bug Geocoris varius (Hemiptera: Geocoridae) on strawberry plants. Appl Entomol Zool 48:165–169. https://doi.org/10.1007/s13355-013-0167-5

    Article  CAS  Google Scholar 

  22. Landis DA, Wratten SD, Gurr GM (2000) Habitat management to conserve natural enemies of arthropod pests in agriculture. Annu Rev Entomol 45:175–201

    Article  CAS  PubMed  Google Scholar 

  23. Lee JC, Heimpel G, Leibee GL (2004) Comparing floral nectar and aphid honeydew diets on the longevity and nutrient levels of a parasitoid wasp. Entomol Exp Appl 111:189–199. https://doi.org/10.1111/j.0013-8703.2004.00165.x

    Article  Google Scholar 

  24. Lu YH, Qiu F, Feng HQ et al (2008) Species composition and seasonal abundance of pestiferous plant bugs (Hemiptera: Miridae) on Bt cotton in China. Crop Prot 27:465–472. https://doi.org/10.1016/j.cropro.2007.07.017

    Article  Google Scholar 

  25. Lu Y, Wu K, Jiang Y et al (2010) Mirid bug outbreaks in multiple crops. Science 328:1151–1154. https://doi.org/10.1126/science.1187881

    Article  CAS  PubMed  Google Scholar 

  26. Lundgren JG (2009) Nutritional aspects of non-prey foods in the life histories of predaceous Coccinellidae. Biol Control 51:294–305. https://doi.org/10.1016/j.biocontrol.2009.05.016

    Article  Google Scholar 

  27. Matsuka M, Watanabe M, Niijima K (1982) Longevity and oviposition of Vedalia beetles (Coleoptera, Coccinellidae) on artificial diets. Environ Entomol 11:816–819. https://doi.org/10.1093/ee/11.4.816

    Article  Google Scholar 

  28. Mollá O, González-Cabrera J, Urbaneja A (2011) The combined use of Bacillus thuringiensis and Nesidiocoris tenuis against the tomato borer Tuta absoluta. Biocontrol 56:883–891. https://doi.org/10.1007/s10526-011-9353-y

    Article  Google Scholar 

  29. Naranjo S, Gibson R (1996) Phytophagy in predaceous Heteroptera: effects on life history and population dynamics. In: Alomar O (ed) Wiedenman N. Proceedings Entomological Society of America, Thomas Say, pp 57–93

    Google Scholar 

  30. Naselli M, Urbaneja A, Siscaro G et al (2016) Stage-related defense response induction in tomato plants by Nesidiocoris tenuis. Int J Mol Sci 17:6–8. https://doi.org/10.3390/ijms17081210

    Article  CAS  Google Scholar 

  31. Nedvěd O, Ceryngier P, Hodková M, Hodek I (2001) Flight potential and oxygen uptake during early dormancy in Coccinella septempunctata. Entomol Exp Appl 99:371–380. https://doi.org/10.1023/A:1019236215873

    Article  Google Scholar 

  32. Olson DM, Fadamiro H, Lundgren JG, Heimpel GE (2001) Effects of sugar feeding on carbohydrate and lipid metabolism in a parasitoid wasp. Physiol Entomol 25:17–26. https://doi.org/10.1046/j.1365-3032.2000.00155.x

    Article  Google Scholar 

  33. Pan H, Liu B, Lu Y, Wyckhuys KAG (2015) Seasonal alterations in host range and fidelity in the polyphagous mirid bug, Apolygus lucorum (Heteroptera: Miridae). PLoS ONE 10:1–17. https://doi.org/10.1371/journal.pone.0117153

    CAS  Article  Google Scholar 

  34. Perdikis D, Fantinou A, Garantonakis N et al (2009) Studies on the damage potential of the predator Nesidiocoris tenuis on tomato plants. Bull Insectology 62:41–46. https://doi.org/10.18311/jbc/2017/15751

    Article  Google Scholar 

  35. Pérez-Alfocea F, Balibrea ME, Alarcón JJ, Bolarín MC (2000) Composition of xylem and phloem exudates in relation to the salt-tolerance of domestic and wild tomato species. J Plant Physiol 156:367–374. https://doi.org/10.1016/S0176-1617(00)80075-9

    Article  Google Scholar 

  36. Pérez-Hedo M, Urbaneja A (2015) Prospects for predatory mirid bugs as biocontrol agents of aphids in sweet peppers. J Pest Sci 88:65–73. https://doi.org/10.1007/s10340-014-0587-1

    Article  Google Scholar 

  37. Pérez-Hedo M, Urbaneja A (2016) The zoophytophagous predator Nesidiocoris tenuis: a successful but controversial biocontrol agent in tomato crops. In: Horowitz AR, Ishaaya I (eds) Advances in insect control and resistance management. Springer, Cham, pp 121–138

    Chapter  Google Scholar 

  38. Pérez-Hedo M, Urbaneja-Bernat P, Jaques JA et al (2015) Defensive plant responses induced by Nesidiocoris tenuis (Hemiptera: Miridae) on tomato plants. J Pest Sci 88:543–554. https://doi.org/10.1007/s10340-014-0640-0

    Article  Google Scholar 

  39. Pérez-Hedo M, Suay R, Alonso M et al (2017) Resilience and robustness of IPM in protected horticulture in the face of potential invasive pests. Crop Prot 97:119–127. https://doi.org/10.1016/j.cropro.2016.11.001

    Article  Google Scholar 

  40. Portillo N, Alomar O, Wäckers F (2012) Nectarivory by the plant-tissue feeding predator Macrolophus pygmaeus Rambur (Heteroptera: Miridae): nutritional redundancy or nutritional benefit? J Insect Physiol 58:397–401. https://doi.org/10.1016/j.jinsphys.2011.12.013

    Article  CAS  PubMed  Google Scholar 

  41. Put K, Bollens T, Wäckers FL, Pekas A (2012) Type and spatial distribution of food supplements impact population development and dispersal of the omnivore predator Macrolophus pygmaeus (Rambur) (Hemiptera: Miridae). Biol Control 63:172–180. https://doi.org/10.1016/j.biocontrol.2012.06.011

    Article  Google Scholar 

  42. Raman K, Sanjayan KP (1984) Histology and histopathology of the feeding lesions by Cyrtopeltis tenuis Rent. (Hemiptera: Miridae) on Lycopersicon esculentum Mill. (Solanaceae). Proc Anim Sci 93:543–547. https://doi.org/10.1007/BF03186303

    Article  Google Scholar 

  43. Raman K, Sanjayan KP, Suresh G (1984) Impact of feeding injury of Cyrtopeltis tenuis Reut. (Hemiptera: Miridae) on some biochemical changes in Lycopersicon esculentum Mill. (Solanaceae). Curr Sci 53:1092–1093

    CAS  Google Scholar 

  44. Sanchez JA (2008) Zoophytophagy in the plantbug Nesidiocoris tenuis. Agric For Entomol 10:75–80. https://doi.org/10.1111/j.1461-9563.2007.00357.x

    Article  Google Scholar 

  45. Sanchez JA (2009) Density thresholds for Nesidiocoris tenuis (Heteroptera: Miridae) in tomato crops. Biol Control 51:493–498. https://doi.org/10.1016/j.biocontrol.2009.09.006

    Article  Google Scholar 

  46. Sanchez JA, Lacasa A (2008) Impact of the zoophytophagous plant bug Nesidiocoris tenuis (Heteroptera: Miridae) on tomato yield. J Econ Entomol 101:1864–1870. https://doi.org/10.1603/0022-0493-101.6.1864

    Article  CAS  PubMed  Google Scholar 

  47. Sanchez JA, Lacasa A, Arnó J et al (2009) Life history parameters for Nesidiocoris tenuis (Reuter) (Het., Miridae) under different temperature regimes. J Appl Entomol 133:125–132. https://doi.org/10.1111/j.1439-0418.2008.01342.x

    Article  Google Scholar 

  48. Sanchez JA, del Amor FM, Flores P, López-Gallego E (2016) Nutritional variations at Nesidiocoris tenuis feeding sites and reciprocal interactions between the mirid and tomato plants. J Appl Entomol 140:161–173. https://doi.org/10.1111/jen.12246

    Article  Google Scholar 

  49. Seagraves MP, Kajita Y, Weber DC et al (2011) Sugar feeding by coccinellids under field conditions: the effects of sugar sprays in soybean. Biocontrol 56:305–314. https://doi.org/10.1007/s10526-010-9337-3

    Article  Google Scholar 

  50. Tena A, Pekas A, Cano D et al (2015) Sugar provisioning maximizes the biocontrol service of parasitoids. J Appl Ecol 52:795–804. https://doi.org/10.1111/1365-2664.12426

    Article  CAS  Google Scholar 

  51. Tena A, Wäckers F, Heimpel G et al (2016) Parasitoid nutritional ecology in a community context: the importance of honeydew and implications for biological control. Curr Opin Insect Sci 14:100–104. https://doi.org/10.1016/j.cois.2016.02.008

    Article  PubMed  Google Scholar 

  52. Urbaneja A, Monton H, Molla O (2009) Suitability of the tomato borer Tuta absoluta as prey for Macrolophus pygmaeus and Nesidiocoris tenuis. J Appl Entomol 133:292–296. https://doi.org/10.1111/j.1439-0418.2008.01319.x

    Article  Google Scholar 

  53. Urbaneja A, Gonzalez-Cabrera J, Gabarra R, Arno J (2012) Prospects for the biological control of Tuta absoluta in tomatoes of the Mediterranean basin. Pest Manag Sci 68:1215–1222. https://doi.org/10.1002/ps.3344

    Article  CAS  PubMed  Google Scholar 

  54. Urbaneja-Bernat P, Alonso M, Tena A et al (2013) Sugar as nutritional supplement for the zoophytophagous predator Nesidiocoris tenuis. Biocontrol 58:57–64. https://doi.org/10.1007/s10526-012-9466-y

    Article  CAS  Google Scholar 

  55. Urbaneja-Bernat P, Mollá O, Alonso M et al (2015) Sugars as complementary alternative food for the establishment of Nesidiocoris tenuis in greenhouse tomato. J Appl Entomol 139:161–167. https://doi.org/10.1111/jen.12151

    Article  CAS  Google Scholar 

  56. Wäckers F, Rinj J, Bruin J (2005) Plant-provided food for carnivorous insects: a protective mutualism and its applications. Cambridge University Press, Cambridge

    Book  Google Scholar 

  57. Wäckers F, Romeis J, van Rijn P (2007) Nectar and pollen feeding by insect herbivores and implications for multitrophic interactions. Annu Rev Entomol 52:301–323. https://doi.org/10.1146/annurev.ento.52.110405.091352

    Article  CAS  PubMed  Google Scholar 

  58. Wade MR, Zalucki MP, Wratten SD, Robinson KA (2008) Conservation biological control of arthropods using artificial food sprays: current status and future challenges. Biol Control 45:185–199. https://doi.org/10.1016/j.biocontrol.2007.10.024

    Article  Google Scholar 

  59. Wheeler AG (2001) Biology of the plant bugs (Hemiptera: Miridae): pests, predators, opportunists. First Edit, Ithaca

    Google Scholar 

  60. Wyckhuys K, Strange-George JE, Kulhanek CA et al (2008) Sugar feeding by the aphid parasitoid Binodoxys communis: how does honeydew compare with other sugar sources? J Insect Physiol 54:481–491. https://doi.org/10.1016/j.jinsphys.2007.11.007

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge two anonymous reviewers for valuable comments. The authors thank Miquel Alonso (IVIA) for technical assistance and Dr. Javier Calvo (KOPPERT BS, Spain) for supplying the insects. The research leading to these results was partially funded by the Spanish Ministry of Economy and Competitiveness (AGL2014-55616-C3) and the Conselleria d’Agricultura, Pesca i Alimentació de la Generalitat Valenciana. JG-C was the recipient of a postdoctoral fellowship from the MCINN (Ramón y Cajal program), and PU-B was the recipient of a predoctoral grant from MCINN (EEBB-I-16-11157).

Funding

The research leading to these results was partially funded by the Spanish Ministry of Economy and Competitiveness (AGL2014-55616-C3) and the Conselleria d’Agricultura, Pesca i Alimentació de la Generalitat Valenciana.

Author information

Affiliations

Authors

Contributions

PU-B, AU, JG-C, and AT designed the research. PU-B and PB conducted experiments. PU-B and AT analyzed the data. All authors commented on the manuscript.

Corresponding author

Correspondence to A. Tena.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by R. Meyhöfer.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Urbaneja-Bernat, P., Bru, P., González-Cabrera, J. et al. Reduced phytophagy in sugar-provisioned mirids. J Pest Sci 92, 1139–1148 (2019). https://doi.org/10.1007/s10340-019-01105-9

Download citation

Keywords

  • Nesidiocoris tenuis
  • Nutritional ecology
  • Biological control
  • Tomato
  • Artificial food