Advertisement

Journal of Pest Science

, Volume 92, Issue 2, pp 523–541 | Cite as

Comparative analysis of thermal performance models describing the effect of temperature on the preimaginal development of Drosophila suzukii

  • Ismael Sánchez-RamosEmail author
  • Cristina E. Fernández
  • Manuel González-Núñez
Original Paper
  • 203 Downloads

Abstract

Drosophila suzukii is a major concern worldwide since its first detection in the Western world in 2008 because it is able to attack healthy ripening fruits producing high economic losses. The knowledge of its biological traits is fundamental to establish sustainable pest management strategies. One of the main factors determining population dynamics of arthropods is temperature. Therefore, modelling the response of the development of pests to this factor contributes to anticipate risk situations and to establish possible new areas of colonization. A mortality model and thirty-two developmental models were used to describe the relationship between the immature survival and developmental rate of D. suzukii versus temperature. The survival and developmental times of the immature stages were determined across a broad range of temperatures (10–31 °C). Then, the models were fitted and the predictions of the developmental models compared with the developmental times obtained under three regimes of fluctuating temperatures (4–16, 13–25 and 21–32 °C). Developmental models were applied to the complete range of temperatures studied at each regime, or they were truncated for the lower and upper regimes at the temperatures that produced 100% immature mortality estimated with the mortality model (8.7–30.9 °C). Better predictions were obtained with the non-truncated models, indicating that some development occurred under short exposures to temperatures beyond those producing 100% mortality during immature development. The Régnière, Lactin II, Hansen, Lobry–Rosso–Flandrois and Logan III models produced the lowest deviations and provided the most realistic lower and higher development thresholds.

Keywords

Spotted wing drosophila Immature stages Developmental period Thermal limits 

Notes

Acknowledgements

This work was supported by the Ministerio de Economía y Competitividad of Spain by the Project 266505 FP7-ERANET EUPHRESCO II. Thanks are due to Dr. Jordi Riudavets (IRTA, Institute of Agrifood Research and Technology, Spain) for providing the D. suzukii population.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10340_2018_1030_MOESM1_ESM.docx (52 kb)
Supplementary material 1 (DOCX 51 kb)

References

  1. Analytis S (1977) Über die Relation zwischen biologischer Entwicklung und Temperatur bei phytopathogenen Pilzen. Phytopathol Z 90:64–76CrossRefGoogle Scholar
  2. Analytis S (1981) Relationship between temperature and development times in phytopathogenic fungus and in plant pests: a mathematical model. Agric Res (Athens) 5:133–159Google Scholar
  3. Andreazza F, Bernardi D, dos Santos RSS, Garcia FRM, Oliveira EE, Botton M, Nava DE (2017) Drosophila suzukii in southern neotropical region: current status and future perspectives. Neotrop Entomol 46:591–605CrossRefPubMedGoogle Scholar
  4. Andrewartha HG, Birch LC (1954) The distribution and abundance of animals. University of Chicago, ChicagoGoogle Scholar
  5. Angilletta MJ Jr (2006) Estimating and comparing thermal performance curves. J Therm Biol 31:541–545CrossRefGoogle Scholar
  6. Asplen MK, Anfora G, Biondi A, Choi DS, Chu D, Daane KM, Gibert P, Gutierrez AP, Hoelmer KA, Hutchison WD, Isaacs R, Jiang ZL, Karpati Z, Kimura MT, Pascual M, Philips CR, Plantamp C, Ponti L, Vetek G, Vogt H, Walton VM, Yu Y, Zappala L, Desneux N (2015) Invasion biology of spotted wing Drosophila (Drosophila suzukii): a global perspective and future priorities. J Pest Sci 88:469–494CrossRefGoogle Scholar
  7. Bale JS, Masters GJ, Hodkinson ID, Awmack C, Bezemer TM, Brown VK, Butterfield J, Buse A, Coulson JC, Farrar J, Good JEG, Harrington R, Hartley S, Jones TH, Lindroth RL, Press MC, Symrnioudis I, Watt AD, Whittaker JB (2002) Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Glob Change Biol 8:1–16CrossRefGoogle Scholar
  8. Barzegar S, Zamani AA, Abbasi S, Shooshtari RV, Farsani NS (2016) Temperature-dependent development modeling of the phorid fly Megaselia halterata (wood) (Diptera: Phoridae). Neotrop Entomol 45:507–517CrossRefPubMedGoogle Scholar
  9. Beck SD (1983) Insect thermoperiodism. Annu Rev Entomol 28:91–108CrossRefGoogle Scholar
  10. Bellamy DE, Sisterson MS, Walse SS (2013) Quantifying host potentials: indexing postharvest fresh fruits for spotted wing drosophila, Drosophila suzukii. PLoS ONE 8:e61227CrossRefPubMedPubMedCentralGoogle Scholar
  11. Bolda M, Goodhue R, Zalom FG (2010) Spotted wing drosophila: potential economic impact of a newly established pest. Agric Resour Econ Update 13:5–8Google Scholar
  12. Briere J-F, Pracros P, Le Roux A-Y, Pierre J-S (1999) A novel rate model of temperature-dependent development for arthropods. Environ Entomol 28:22–29CrossRefGoogle Scholar
  13. Burnham KP, Anderson DR (2002) Model selection and multimodel inference. A practical information-theoretic approach. Springer, New YorkGoogle Scholar
  14. Calabria G, Maca J, Bachli G, Serra L, Pascual M (2012) First records of the potential pest species Drosophila suzukii (Diptera: Drosophilidae) in Europe. J Appl Entomol 136:139–147CrossRefGoogle Scholar
  15. Campbell A, Frazer BD, Gilbert N, Gutiérrez N, MacKauer M (1974) Temperature requirements of some aphids and their parasites. J Appl Ecol 11:431–438CrossRefGoogle Scholar
  16. Cini A, Ioriatti C, Anfora G (2012) A review of the invasion of Drosophila suzukii in Europe and a draft research agenda for integrated pest management. Bull Insectol 65:149–160Google Scholar
  17. Cini A, Anfora G, Escudero-Colomar LA, Grassi A, Santosuosso U, Seljak G, Papini A (2014) Tracking the invasion of the alien fruit pest Drosophila suzukii in Europe. J Pest Sci 87:559–566CrossRefGoogle Scholar
  18. Colinet H, Sinclair BJ, Vernon P, Renault D (2015) Insects in fluctuating thermal environments. Annu Rev Entomol 60:123–140CrossRefGoogle Scholar
  19. Coop L (2010) Online phenology and degree-day model for agricultural and decision-making in the US. Integrated Plant Protection Center, Botany and Plant Pathology Department, Oregon State University, Corvallis. http://uspest.org/risk/models?spp_swd. Accessed 4 Apr 2018
  20. Damos PT, Savopoulou-Soultani M (2008) Temperature-dependent bionomics and modeling of Anarsia lineatella (Lepidoptera: Gelechiidae) in the laboratory. J Econ Entomol 101:1557–1567CrossRefPubMedGoogle Scholar
  21. Damos P, Savopoulou-Soultani M (2012) Temperature-driven models for insect development and vital thermal requirements. Psyche 2012:1–13CrossRefGoogle Scholar
  22. Damus M (2009) Some preliminary results from Climex and Maxent distribution modeling of Drosophila suzukii. Version 2: CFIA Plant Health Risk Assessment, Ottawa, Canada. http://horticulture.oregonstate.edu/system/files/u1318/DrosophilaSuzukiiInfestationModel.pdf. Accessed 4 Apr 2018
  23. Davis JA, Radcliffe EB, Ragsdale DW (2006) Effects of high and fluctuating temperatures on Myzus persicae (Hemiptera: Aphididae). Environ Entomol 35:1461–1468CrossRefGoogle Scholar
  24. de Jong G, van der Have TM (2009) Temperature dependence of development rate, growth rate and size: from biophysics to adaptation. In: Whitman DW, Ananthakrishnan TN (eds) Phenotypic plasticity of insects. Mechanisms and consequences. Science Publishers, Enfield, pp 523–588Google Scholar
  25. Deprá M, Poppe JL, Schmitz HJ, De Toni DC, Valente VLS (2014) The first records of the invasive pest Drosophila suzukii in the South American continent. J Pest Sci 87:379–383CrossRefGoogle Scholar
  26. Emiljanowicz LM, Ryan GD, Langille A, Newman J (2014) Development, reproductive output and population growth of the fruit fly pest Drosophila suzukii (Diptera: Drosophilidae) on artificial diet. J Econ Entomol 107:1392–1398CrossRefPubMedGoogle Scholar
  27. Gadino AN, Walton VM (2012) Temperature-related development and population parameters for Typhlodromus pyri (Acari: Phytoseiidae) found in Oregon vineyards. Exp Appl Acarol 58:1–10CrossRefPubMedGoogle Scholar
  28. Ganjisaffar F, Fathipour Y, Kamali K (2011) Temperature-dependent development and life table parameters of Typhlodromus bagdasarjani (Phytoseiidae) fed on two-spotted spider mite. Exp Appl Acarol 55:259–272CrossRefPubMedGoogle Scholar
  29. García-Martínez FO, Pérez-Sayas C, Falcó JV, Tormos J, Beitia F (2014) La drosófila de alas manchadas Drosophila suzukii: cría en laboratorio y ensayos preliminares con parasitoides. Agríc Vergel 372:65–69Google Scholar
  30. García-Ruiz E, Marco V, Pérez-Moreno I (2011) Effects of variable and constant temperatures on the embryonic development and survival of a new grape pest, Xylotrechus arvicola (Coleoptera: Cerambycidae). Environ Entomol 40:939–947CrossRefPubMedGoogle Scholar
  31. Hamby KA, Bellamy DE, Chiu JC, Lee JC, Walton VM, Wiman NG, York RM, Biondi A (2016) Biotic and abiotic factors impacting development, behavior, phenology, and reproductive biology of Drosophila suzukii. J Pest Sci 89:605–619CrossRefGoogle Scholar
  32. Hansen EM, Bentz BJ, Powell JA, Gray DR, Vandygriff JC (2011) Prepupal diapause and instar IV developmental rates of the spruce beetle, Dendroctonus rufipennis (Coleoptera: Curculionidae, Scolytinae). J Insect Physiol 57:1347–1357CrossRefPubMedGoogle Scholar
  33. Harcourt DG, Yee JM (1982) Polynomial algorithm for predicting the duration of insect life stages. Environ Entomol 11:581–584CrossRefGoogle Scholar
  34. Hardin JA, Kraus DA, Burrack HJ (2015) Diet quality mitigates intraspecific larval competition in Drosophila suzukii. Entomol Exp Appl 156:59–65CrossRefGoogle Scholar
  35. Hilbert DW, Logan JA (1983) Empirical model of nymphal development for the migratory grasshopper, Melanoplus sanguinipes (Orthoptera: Acrididae). Environ Entomol 12:1–5CrossRefGoogle Scholar
  36. Hudes ES, Shoemaker CA (1988) Inferential method for modeling insect phenology and its application to the spruce budworm (Lepidoptera: Tortricidae). Environ Entomol 17:97–108CrossRefGoogle Scholar
  37. Huey RB, Stevenson RD (1979) Integrating thermal physiology and ecology of ectotherms: a discussion of approaches. Am Zool 19:357–366CrossRefGoogle Scholar
  38. Huey RB, Partridge L, Fowler K (1991) Thermal sensitivity of Drosophila melanogaster responds rapidly to laboratory natural selection. Evolution 45:751–756CrossRefPubMedGoogle Scholar
  39. Hurvich CM, Tsai CL (1989) Regression and time series model selection in small samples. Biometrika 76:297–307CrossRefGoogle Scholar
  40. Ikemoto T (2005) Intrinsic optimum temperature for development of insects and mites. Environ Entomol 34:1377–1387CrossRefGoogle Scholar
  41. Janisch E (1932) The influence of temperature on the life history of insects. Trans Entomol Soc Lond 80:137–168CrossRefGoogle Scholar
  42. Jaramillo SL, Mehlferber E, Moore PJ (2015) Life-history trade-offs under different larval diets in Drosophila suzukii (Diptera: Drosophilidae). Physiol Entomol 40:2–9CrossRefGoogle Scholar
  43. Jeffs CT, Leather SR (2014) Effects of extreme, fluctuating temperature events on life history traits of the grain aphid, Sitobion avenae. Entomol Exp Appl 150:240–249CrossRefGoogle Scholar
  44. Kenis M, Tonina L, Eschen R, van der Sluis B, Sancassani M, Mori N, Haye T, Helsen H (2016) Non-crop plants used as hosts by Drosophila suzukii in Europe. J Pest Sci 89:735–748CrossRefGoogle Scholar
  45. Kinjo H, Kunimi Y, Nakai M (2014) Effects of temperature on the reproduction and development of Drosophila suzukii (Diptera: Drosophilidae). Appl Entomol Zool 49:297–304CrossRefGoogle Scholar
  46. Kontodimas DC, Eliopoulus PA, Stathas GJ, Economou LP (2004) Comparative temperature-dependent development of Nephus includens (Kirsch) and Nephus bisignatus (Boheman) (Coleoptera: Coccinellidae) preying on Planococcus citri (Risso) (Homoptera: Pseudococcidelidae): evaluation of a linear and various nonlinear models using specific criteria. Environ Entomol 33:1–11CrossRefGoogle Scholar
  47. Kvalseth TO (1985) Cautionary note about R2. Am Stat 39:279–285Google Scholar
  48. Lactin DJ, Holliday NJ, Johnson DL, Craigen R (1995) Improved rate model of temperature-dependent development by arthropods. Environ Entomol 24:68–75CrossRefGoogle Scholar
  49. Lamb RJ, Gerber GH, Atkinson GF (1984) Comparison of developmental rate curves applied to egg hatching data of Entomoscelis americana Brown (Coleoptera: Chrysomelidae). Environ Entomol 13:868–872CrossRefGoogle Scholar
  50. Lee JC, Bruck DJ, Curry H, Edwards D, Haviland DR, Van Steenwyk RA, Yorgey BM (2011) The susceptibility of small fruits and cherries to the spotted-wing drosophila, Drosophila suzukii. Pest Manag Sci 67:1358–1367CrossRefPubMedGoogle Scholar
  51. Lee JC, Dreves AJ, Cave AM, Kawai S, Isaacs R, Miller JC, Van Timmeren S, Bruck DJ (2015) Infestation of wild and ornamental noncrop fruits by Drosophila suzukii (Diptera: Drosophilidae). Ann Entomol Soc Am 108:117–129CrossRefGoogle Scholar
  52. Liu SS, Meng XD (2000) Modelling development time of Lipaphis erysimi (Hemiptera: Aphididae) at constant and variable temperatures. Bull Entomol Res 90:337–347CrossRefPubMedGoogle Scholar
  53. Liu S-S, Zhang G-M, Zhu J (1995) Influence of temperature variations on rate of development in insects: analysis of case studies from entomological literature. Ann Entomol Soc Am 88:107–119CrossRefGoogle Scholar
  54. Logan JA (1988) Toward an expert system for development of pest simulation models. Environ Entomol 17:359–376CrossRefGoogle Scholar
  55. Logan DP, Barrington AM (2015) Effect of temperature on development and survival of burnt pine longhorn Arhopalus ferus (Mulsant) (Coleoptera: Cerambycidae) eggs. N Z Entomol 39:33–39CrossRefGoogle Scholar
  56. Logan JA, Wolkind DJ, Hoyt SC, Tanigoshi LK (1976) An analytic model for description of temperature dependent rate phenomena in Arthropods. Environ Entomol 5:1133–1140CrossRefGoogle Scholar
  57. Maharjan R, Jung C (2016) Thermal requirements and development of the Korean population of the potato leafminer, Liriomyza huidobrensis (Diptera: Agromyzidae). J Asia Pac Entomol 19:595–601CrossRefGoogle Scholar
  58. Martínez-García H, Sáenz-Romo MG, Aragón-Sánchez M, Román-Fernández LR, Sáenz-de-Cabezón E, Marco-Mancebón VS, Pérez-Moreno I (2017) Temperature-dependent development of Macrolophus pygmaeus and its applicability to biological control. Biocontrol 62:481–493CrossRefGoogle Scholar
  59. Moallem Z, Karimi-Malati A, Sahragard A, Zibaee A (2017) Modeling temperature-dependent development of Glyphodes pyloalis (Lepidoptera: Pyralidae). J Insect Sci 17:1–8CrossRefGoogle Scholar
  60. Moore JL, Remais JV (2014) Developmental models for estimating ecological responses to environmental variability: structural, parametric, and experimental issues. Acta Biotheor 62:69–90CrossRefPubMedPubMedCentralGoogle Scholar
  61. Morales-Ramos JA, Cate JR (1993) Temperature-dependent developmental rates of Catolaccus grandis (Hymenoptera, Pteromalidae). Environ Entomol 22:226–233CrossRefGoogle Scholar
  62. Okuyama T (2014) On the estimation of temperature-dependent development rate. Appl Entomol Zool 49:499–503CrossRefGoogle Scholar
  63. Poyet M, Le Roux V, Gibert P, Meirland A, Prevost G, Eslin P, Chabrerie O (2015) The wide potential trophic niche of the asiatic fruit fly Drosophila suzukii: the key of its invasion success in temperate Europe? PLoS ONE 10(11):e0142785CrossRefPubMedPubMedCentralGoogle Scholar
  64. Raspi A, Canale A, Canovai R, Conti B, Loni A, Strumia F (2011) Insetti delle aree protette del comune di San Giuliano Terme. Felici Editore. San Giuliano Terme, PisaGoogle Scholar
  65. Ratkowsky DA, Reddy GVP (2017) Empirical model with excellent statistical properties for describing temperature-dependent developmental rates of insects and mites. Ann Entomol Soc Am 110:302–309CrossRefGoogle Scholar
  66. Ratkowsky DA, Lowry RK, McMeekin TA, Stokes AN, Chandler RE (1983) Model for bacterial culture growth rate throughout the entire biokinetic temperature range. J Bacteriol 154:1222–1226PubMedPubMedCentralGoogle Scholar
  67. Ratkowsky DA, Olley J, Ross T (2005) Unifying temperature effects on the growth rate of bacteria and the stability of globular proteins. J Theor Biol 233:351–362CrossRefPubMedGoogle Scholar
  68. Ratte HT (1985) Temperature and insect development. In: Hoffman KH (ed) Environmental physiology and biochemistry of insects. Springer, New York, pp 33–66Google Scholar
  69. Régnière J, Powell JA (2013) Animal life cycle models (Poikilotherms). In: Schwarz MD (ed) Phenology: an integrative environmental science. Springer, Berlin, pp 295–315CrossRefGoogle Scholar
  70. Régnière J, Powell J, Bentz B, Nealis V (2012) Effects of temperature on development, survival and reproduction of insects: experimental design, data analysis and modeling. J Insect Physiol 58:634–647CrossRefGoogle Scholar
  71. Rosso L, Lobry JR, Flandrois JP (1993) An unexpected correlation between cardinal temperatures of microbial growth highlighted by a new model. J Theor Biol 162:447–463CrossRefPubMedGoogle Scholar
  72. Ryan GD, Emiljanowicz L, Wilkinson F, Kornya M, Newman JA (2016) Thermal tolerances of the spotted-wing drosophila Drosophila suzukii (Diptera: Drosophilidae). J Econ Entomol 109:746–752CrossRefPubMedGoogle Scholar
  73. Sánchez-Ramos I, Castañera P (2001) Development and survival of Tyrophagus putrescentiae (Acari: Acaridae) at constant temperatures. Environ Entomol 30:1082–1089CrossRefGoogle Scholar
  74. Sánchez-Ramos I, Álvarez-Alfageme F, Castañera P (2007) Development and survival of the cheese mites, Acarus farris and Tyrophagus neiswanderi (Acari: Acaridae), at constant temperatures and 90% relative humidity. J Stored Prod Res 43:64–72CrossRefGoogle Scholar
  75. Sánchez-Ramos I, Pascual S, Fernández CE, Marcotegui A, González-Núñez M (2015) Effect of temperature on the survival and development of the immature stages of Monosteira unicostata (Hemiptera: Tingidae). Eur J Entomol 112:664–675CrossRefGoogle Scholar
  76. Schoolfield RM, Sharpe PJH, Magnuson CE (1981) Non-linear regression of biological temperature-dependent rate models based on absolute reaction-rate theory. J Theor Biol 88:719–731CrossRefGoogle Scholar
  77. Schwarz G (1978) Estimating dimension of a model. Ann Stat 6:461–464CrossRefGoogle Scholar
  78. Sharpe PJ, DeMichele DW (1977) Reaction kinetics of poikilotherm development. J Theor Biol 64:649–670CrossRefPubMedGoogle Scholar
  79. Shi P, Ge F (2010) A comparison of different thermal performance functions describing temperature-dependent development rates. J Therm Biol 35:225–231CrossRefGoogle Scholar
  80. Shi P, Ge F, Sun Y, Chen C (2011) A simple model for describing the effect of temperature on insect developmental rate. J Asia Pac Entomol 14:15–20CrossRefGoogle Scholar
  81. Shi PJ, Reddy GVP, Chen L, Ge F (2016) Comparison of thermal performance equations in describing temperature-dependent developmental rates of insects: (I) empirical models. Ann Entomol Soc Am 109:211–215CrossRefGoogle Scholar
  82. Shi PJ, Reddy GVP, Chen L, Ge F (2017) Comparison of thermal performance equations in describing temperature-dependent developmental rates of insects: (II) two thermodynamic models. Ann Entomol Soc Am 110:113–120CrossRefGoogle Scholar
  83. StatPoint Technologies (2009) Statgraphics® Centurion XVI user manual. Statpoint Technologies, WarrentonGoogle Scholar
  84. Stinner RE, Gutiérrez AP, Butler GD Jr (1974) An algorithm for temperature-dependent growth rate simulation. Can Entomol 106:519–524CrossRefGoogle Scholar
  85. SYSTAT (2002) TableCurve 2D 5.01 for Windows user’s manual. SYSTAT Software Inc, RichmondGoogle Scholar
  86. Taylor F (1981) Ecology and evolution of physiological time in insects. Am Nat 117:1–23CrossRefGoogle Scholar
  87. Tochen S, Dalton DT, Wiman N, Hamm C, Shearer PW, Walton VM (2014) Temperature-related development and population parameters for Drosophila suzukii (Diptera: Drosophilidae) on cherry and blueberry. Environ Entomol 43:501–510CrossRefPubMedGoogle Scholar
  88. Tochen S, Woltz JM, Dalton DT, Lee JC, Wiman NG, Walton VM (2016) Humidity affects populations of Drosophila suzukii (Diptera: Drosophilidae) in blueberry. J Appl Entomol 140:47–57CrossRefGoogle Scholar
  89. Trudgill DL, Honek A, Li D, Van Straalen NM (2005) Thermal time—concepts and utility. Ann Appl Biol 146:1–14CrossRefGoogle Scholar
  90. Uvarov BP (1931) Insects and climate. Trans Entomol Soc Lond 79:1–247CrossRefGoogle Scholar
  91. Walsh DB, Bolda MP, Goodhue RE, Dreves AJ, Lee J, Bruck DJ, Walton VM, O’Neal SD, Zalom FG (2011) Drosophila suzukii (Diptera: Drosophilidae): invasive pest of ripening soft fruit expanding its geographic range and damage potential. J Integr Pest Manag 2:1–7CrossRefGoogle Scholar
  92. Wang EL, Engel T (1998) Simulation of phenological development of wheat crops. Agric Syst 58:1–24CrossRefGoogle Scholar
  93. Wang R-S, Lan Z-X, Ding Y-Q (1982) Studies on mathematical models of the relationship between insect development and temperature. Acta Ecol Sin 2:47–57 (in Chinese: English abstract) Google Scholar
  94. Wang LF, Shi PJ, Chen C, Xue FS (2013) Effect of temperature on the development of Laodelphax striatellus (Homoptera: Delphacidae). J Econ Entomol 106:107–114CrossRefPubMedGoogle Scholar
  95. Warren JA, Anderson GS (2013) Effect of fluctuating temperatures on the development of a forensically important blow fly, Protophormia terraenovae (Diptera: Calliphoridae). Environ Entomol 42:167–172CrossRefPubMedGoogle Scholar
  96. Wiman NG, Dalton DT, Anfora G, Biondi A, Chiu JC, Daane KM, Gerdeman B, Gottardello A, Hamby KA, Isaacs R, Grassi A, Ioriatti C, Lee JC, Miller B, Stacconi MVR, Shearer PW, Tanigoshi L, Wang XG, Walton VM (2016) Drosophila suzukii population response to environment and management strategies. J Pest Sci 89:653–665CrossRefGoogle Scholar
  97. Worner SP (1992) Performance of phenological models under variable temperature regimes: consequences of the Kaufman or rate summation effect. Environ Entomol 21:689–699CrossRefGoogle Scholar
  98. Yin XY, Kropff MJ, McLaren G, Visperas RM (1995) A nonlinear model for crop development as a function of temperature. Agric For Meteorol 77:1–16CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Entomology Group, Plant Protection DepartmentInstituto Nacional de Investigación y Tecnología Agraria y Alimentaria, O.A., M.P. (INIA)MadridSpain

Personalised recommendations