Journal of Pest Science

, Volume 91, Issue 4, pp 1213–1224 | Cite as

Large-scale spatial dynamics of Drosophila suzukii in Trentino, Italy

  • Gabriella TaitEmail author
  • Alberto Grassi
  • Ferdinand Pfab
  • Cristina M. Crava
  • Daniel T. Dalton
  • Roger Magarey
  • Lino Ometto
  • Silvia Vezzulli
  • M. Valerio Rossi-Stacconi
  • Angela Gottardello
  • Andrea Pugliese
  • Giuseppe Firrao
  • Vaughn M. Walton
  • Gianfranco Anfora
Original Paper


Drosophila suzukii (Diptera: Drosophilidae) is an invasive alien species devastating soft fruit crops in newly invaded territories. Little is known about the importance and potential of long-distance dispersal at a regional scale. The goal of this work is to investigate D. suzukii dispersal ability during different times of the season, and along an elevational gradient in a mountain valley in Trentino Province, Italy. We employed a mark–release–recapture strategy using protein markers. Flies were recaptured using fruit-baited traps. The protein-marked flies were positively identified using ELISA procedure. Additional microsatellite analyses were performed on D. suzukii collected during autumn at different elevations to characterize the population structure. Results suggest that a portion of the local D. suzukii population moves from low to high elevations during spring and summer and travels back to low elevations in autumn. Genetic analysis further revealed that samples collected during autumn at different elevations belong to the same population. These results show that D. suzukii are able to fly up to about 9000 m away from the marking point and that seasonal breezes likely facilitate long-distance movement. We suggest that these migrations have multiple functions for D. suzukii, including conferring the ability to exploit gradual changes of temperature, food, and ovipositional resources in spring and autumn, as well as to assist in the search for suitable overwintering sites in late autumn. Our findings help to unveil the complex ecology of D. suzukii in Italian mountainous regions and provide important clues for improving the efficacy of integrated pest management control techniques to combat this pest.


Spotted wing drosophila Mark–release–recapture Seasonal movement ELISA Microsatellite markers Abiotic factors 



We thank Joe Russo of ZedX inc. (Bellefonte, PA) for supplying the CFSR weather data. The supply of these weather data was supported by the USDA-NIFA AFRI Competitive Grants Program Food Security Challenge Area grant 2015-68004-23179. We thank Elisabetta Leonardelli for the technical support. We also thank Linda Brewer who helped with the English language revision.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. This article does not contain any studies with human participants performed by any of the authors.


  1. Ahmed S, Compton SG, Butlin RK, Gilmartin PM (2009) Wind-borne insects mediate directional pollen transfer between desert fig trees 160 kilometers apart. Proc Natl Acad Sci 106(48):20342–20347CrossRefPubMedGoogle Scholar
  2. Asplen MK, Anfora G, Biondi A, Choi DS, Chu D, Daane KM, Gibert P, Gutierrez AP, Hoelmer KA, Hutchinson WD, Isaacs R, Jiang ZL, Kárpáti Z, Kimura MT, Pascual M, Philips CR, Plantamp C, Ponti L, Vétek G, Vogt H, Walton VM, Yu Y, Zappalà L, Desneux N (2015) Invasion biology of spotted wing Drosophila (Drosophila suzukii): a global perspective and future priorities. J Pest Sci 88:469–494CrossRefGoogle Scholar
  3. Beerwinkle KR, Lopez JD, Witz JA, Schleider PG, Eyster RS, Lingren PD (1994) Seasonal radar and meteorological observations associated with nocturnal insect flight at altitudes to 900 meters. Environ Entomol 23(3):676–683CrossRefGoogle Scholar
  4. Bigsby KM, Tobin PC, Sills EO (2011) Anthropogenic drivers of gypsy moth spread. Biol Invasions 13(9):2077–2090CrossRefGoogle Scholar
  5. Blaauw BR, Jones VP, Nielsen AL (2016) Utilizing immunomarking techniques to track Halyomorpha halys (Hemiptera: Pentatomidae) movement and distribution within a peach orchard. PeerJ 4:e1997CrossRefPubMedPubMedCentralGoogle Scholar
  6. Boina DR, Meyer WL, Onagbola EO, Stelinski LL (2009) Quantifying dispersal of Diaphorina citri (Hemiptera: Psyllidae) by immunomarking and potential impact of unmanaged groves on commercial citrus management. Environ Entomol 38:1250–1258CrossRefPubMedGoogle Scholar
  7. Brattström O, Kjellen N, Alerstam T, Akesson S (2008) Effects of wind and weather on red admiral, Vanessa atalanta, migration at a coastal site in southern Sweden. Anim Behav 76(2):335–344CrossRefGoogle Scholar
  8. Calabria G, Máca J, Bächli G, Serra L, Pascual M (2012) First records of the potential pest species Drosophila suzukii (Diptera: Drosophilidae) in Europe. J Appl Entomol 136(1–2):139–147CrossRefGoogle Scholar
  9. Cini A, Ioriatti C, Anfora G (2012) A review of the invasion of Drosophila suzukii in Europe and a draft research agenda for integrated pest management. Bull Insectology 65(1):149–160Google Scholar
  10. Cini A, Anfora G, Wscuder-Colomar LA, Grassi A, Santuosso U, Seljak G, Papini A (2014) Tracking the invasion of the alien fruit pest Drosophila suzukii in Europe. J Pest Sci 87(4):559–566CrossRefGoogle Scholar
  11. Coviella CEC, Garcia JFJ, Jeske DDR, Redak R, Luck RF (2006) Feasibility of tracking within-field movements of Homalodisca coagulata (Hemiptera: Cicadellidae) and estimating its densities using fluorescent dusts in mark-release. J Econ 99(4):1051–1057Google Scholar
  12. Coyne JA, Boussy IA, Prout T, Bryant SH, Jones JS, Moore JA (1982) Long-distance migration of Drosophila. Am Nat 119:589–595CrossRefGoogle Scholar
  13. Dalton DT, Walton VM, Shearer PW, Walsh DB, Caprile J, Isaacs R (2011) Laboratory survival of Drosophila suzukii under simulated winter conditions of the Pacific Northwest and seasonal field trapping in five primary regions of small and stone fruit production in the United States. Pest Manag Sci 67:1368–1374CrossRefPubMedGoogle Scholar
  14. De Ros GS, Conci ST, Pantezzi T, Savini G (2015) The economic impact of invasive pest Drosophila suzukii on berry production in the Province of Trento, Italy. J Berry Res 5(2):89–96CrossRefGoogle Scholar
  15. Evans RK, Toews MD, Sial AA (2017) Diel periodicity of Drosophila suzukii (Diptera: Drosophilidae) under field conditions. PLoS ONE 12(2):e0171718CrossRefPubMedPubMedCentralGoogle Scholar
  16. Excoffier L, Laval G, Schneider S (2005) Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50CrossRefGoogle Scholar
  17. Farnsworth D, Hamby KA, Bolda M, Goodhue RE, Williams JC, Zalom FG (2017) Economic analysis of revenue losses and control costs associated with the spotted wing drosophila, Drosophila suzukii (Matsumura), in the California raspberry industry. Pest Manag Sci 73(6):1083–1090CrossRefPubMedGoogle Scholar
  18. Fraimout A, Loiseau A, Price DK, Xuereb A, Martin J-F, Vitalis R, Fellous S, Debat V, Estoup A (2015) New set of microsatellite markers for the spotted-wing Drosophila suzukii (Diptera: Drosophilidae): a promising molecular tool for inferring the invasion history of this major insect pest. Eur J Entomol 112(4):855–859Google Scholar
  19. Giovannini L, Antonacci G, Zardi D, Laiti L, Panziera L (2013) Atlante climatico del Trentino. Sensitivity of simulated wind speed to spatial resolution over complex terrain. Energy Proc 59C:323–329Google Scholar
  20. Goldreich Y, Druyan LM, Berger H (1986) The interaction of valley/mountain winds with a diurnally veering sea/land breeze. J Climatol 6(5):551–561CrossRefGoogle Scholar
  21. Grassi A, Gottardello A, Dalton DT, Tait G, Rendon D, Ioriatti C, Gibeaut D, Rossi Stacconi MV, Walton MV (2017) Seasonal reproductive biology of Drosophila suzukii (Diptera: Drosophilidae) in temperate climates. Environ Entomol. CrossRefGoogle Scholar
  22. Hagler JR, Jackson CG (2001) Methods for marking insects: current techniques and future prospects. Annu Rev Entomol 46:511–543CrossRefPubMedGoogle Scholar
  23. Hagler JR, Jones VP (2010) A protein-based approach to mark arthropods for mark–capture type research. Entomol Exp Appl 135(2):177–192CrossRefGoogle Scholar
  24. Hauser M (2011) A historic account of the invasion of Drosophila suzukii (Matsumura) (Diptera: Drosophilidae) in the continental United States, with remarks on their identification. Pest Manag Sci 67(11):1352–1357CrossRefPubMedGoogle Scholar
  25. Jones VP, Hagler JR, Brunner JF, Baker CC, Wilburn TD (2006) An inexpensive immunomarking technique for studying movement patterns of naturally occurring insect populations. Environ Entomol 35(4):827–836CrossRefGoogle Scholar
  26. Kalinowski ST, Taper ML, Marshall TC (2007) Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol Ecol 16(5):1099–1106CrossRefPubMedGoogle Scholar
  27. Kanzawa T (1939) Studies on Drosophila suzukii Mats. Kofu. Rev of Appl Entomol 29:622Google Scholar
  28. Kimura MT (2004) Cold and heat tolerance of drosophilid flies with reference to their latitudinal distributions. Oecologia 140:442–449CrossRefPubMedGoogle Scholar
  29. Kimura MT, Beppu K (1993) Climatic adaptations in the Drosophila immigrans species group-seasonal migration and thermal tolerance. Ecol Entomol 18:141–149CrossRefGoogle Scholar
  30. Kimura MT, Toda MJ, Beppu A, Watabe H (1977) Breeding sites of drosophilid flies in and near Sapporo, northern Japan, with supplementary notes on adult feeding habits. Kontyu 45:571–582Google Scholar
  31. Klick J, Lee JC, Hagler JR, Bruck DJ, Yang WQ (2014) Evaluating Drosophila suzukii immunomarking for mark–capture research. Entomol Exp Appl 152(1):31–41CrossRefGoogle Scholar
  32. Klick J, Yang WQ, Walton VM, Dalton DT, Hagler JR, Dreves AJ, Lee JC, Bruck DJ (2015) Distribution and activity of Drosophila suzukii in cultivated raspberry and surrounding vegetation. J App Entomol 140(1–2):37–46Google Scholar
  33. Lee JC, Bruck DJ, Dreves AJ, Ioriatti C, Vogt H, Baufeld P (2011) In focus: spotted wing drosophila, Drosophila suzukii, across perspectives. Pest Manag Sci 67(11):1349–1351CrossRefPubMedGoogle Scholar
  34. Lessio F, Tota F, Alma A (2014) Tracking the dispersion of Scaphoideus titanus Ball (Hemiptera: Cicadellidae) from wild to cultivated grapevine: use of a novel mark–capture technique. Bull Entomol Res 104(4):432–443CrossRefPubMedGoogle Scholar
  35. Magarey RD, Borchert DM, Fowler GA, Hong SC (2015) The NCSU/APHIS plant pest forecasting system (NAPPFAST). In: Venette R (ed) Pest risk modelling and mapping for invasive alien species. CABI, WallingfordGoogle Scholar
  36. Matschiner M, Salzburger W (2009) TANDEM: Integrating automated allele binning into genetics and genomics workflows. Bioinformatics 25(15):1982–1983CrossRefPubMedGoogle Scholar
  37. Mazzi D, Bravin E, Meraner M, Finger R, Kuske S (2017) Economic impact of the introduction and establishment of Drosophila suzukii on sweet cherry production in Switzerland. Insects 8(1):18CrossRefPubMedCentralGoogle Scholar
  38. Mitsui H, Beppu K, Kimura MT (2010) Seasonal life cycles and resource uses of flower- and fruit-feeding drosophilid flies (Diptera: Drosophilidae) in central Japan. Entomol Sci 13(1):60–67CrossRefGoogle Scholar
  39. Nathan R, Perry G, Cronin JT, Strand AE, Cain ML (2003) Methods for estimating long-distance dispersal. OIKOS 103:261–273CrossRefGoogle Scholar
  40. Northfield TD, Mizell RF, Paini DR, Andersen PC, Brodbeck BV, Riddle TC, Hunter WB (2009) Dispersal, patch leaving, and distribution of Homalodisca vitripennis (Hemiptera: Cicadellidae). Environ Entomol 38(1):183–191CrossRefPubMedGoogle Scholar
  41. Ometto L, Cestaro A, Ramasamy S, Grassi A, Revadi S, Siozios S, Moretto M, Fontana P, Varotto C, Pisani D, Dekker T, Wrobel N, Viola R, Pertot I, Cavalieri D, Blaxter M, Anfora G, Rota-Stabelli O (2013) Linking genomics and ecology to investigate the complex evolution of an invasive Drosophila pest. Genome Biol Evol 5:745–757CrossRefPubMedPubMedCentralGoogle Scholar
  42. Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in excel. Population genetic software for teaching and research. Mol Ecol Notes 6(1):288–295CrossRefGoogle Scholar
  43. R Core Team (2014) R: A language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  44. Riley JR, Reynolds DR, Mukhopadhyay S, Ghosh MR (1995) Long distance migration of aphids and other small insects in northeast India. Eur J Entomol 92:639–653Google Scholar
  45. Rossi-Stacconi MV, Kaur R, Mazzoni V, Ometto L, Grassi A, Gottardello A, Rota-Stabelli O, Anfora G (2016) Multiple lines of evidence for reproductive winter diapause in the invasive pest Drosophila suzukii: useful clues for control strategies. J Pest Sci 89(3):689–700CrossRefGoogle Scholar
  46. Ryan GD, Emiljanowicz L, Wilkinson F, Kornya M, Newman JA (2016) Thermal tolerances of the spotted-wing drosophila Drosophila suzukii (Diptera: Drosophilidae). J Econ Entomol 109(2):746–752CrossRefPubMedGoogle Scholar
  47. Saha S, Moorthi S, Pan HL, Wu X, Wang J, Nadiga S, Tripp P, Kistler R, Woollen J, Behringer D (2010) The NCEP climate forecast system reanalysis. Bull Am Meteorol Soc 91(8):1015–1057CrossRefGoogle Scholar
  48. Schneider JC (1989) Role of movement in evaluation of area wide insect pest management tactics. Environ Entomol 18:868–874CrossRefGoogle Scholar
  49. Shearer PW, West JD, Walton VM, Brown PH, Svetec N, Chiu JC (2016) Seasonal cues induce phenotypic plasticity of Drosophila suzukii to enhance winter survival. BMC Ecol 16:11CrossRefPubMedPubMedCentralGoogle Scholar
  50. Sivakoff FS, Rosenheim JA, Hagler JR (2011) Threshold choice and the analysis of protein marking data in long-distance dispersal studies. Methods Ecol Evol 2(1):77–85CrossRefGoogle Scholar
  51. Skovga H (2002) Dispersal of the filth fly parasitoid Spalangia cameroni (Hymenoptera: Pteromalidae) in a swine facility using fluorescent. Environ Entomol 31(3):425–431CrossRefGoogle Scholar
  52. Stefanescu C, Páramo F, Åkesson S, Alarcón M, Ávila A, Brereton T, Carnicer J, Cassar LF, Fox R, Heliölä J, Hill JH, Hirneisen N, Kjellén N, Kühn E, Kuussaari M, Leskinen M, Liechti F, Musche M, Regan EC, Reynolds DR, Roy DB, Ryrholm N, Schmaljohann H, Settele J, Thomas CD, Van Swaay C, Chapman JW (2013) Multi-generational long-distance migration of insects: studying the painted lady butterfly in the western Palaearctic. Ecography (Cop.) 36(4):474–486CrossRefGoogle Scholar
  53. Stephens AR, Asplen MK, Hutchison WD, Venette RC (2015) Cold hardiness of winter-acclimated Drosophila suzukii (Diptera: Drosophilidae) adults. Environ Entomol 44(6):1619–1626CrossRefPubMedGoogle Scholar
  54. Stone PH, Carlson JH (1979) Atmospheric lapse rate regimes and their parameterization. J Atmos Sci 36:415–423CrossRefGoogle Scholar
  55. Tait G, Vezzulli S, Sassù F, Antonini G, Biondi A, Baser N, Sollai G, Cini A, Tonina L, Ometto L, Anfora G (2017) Genetic variability in Italian populations of Drosophila suzukii. BMC Genet 18:87CrossRefPubMedPubMedCentralGoogle Scholar
  56. Taylor LR (1974) Insect migration, flight periodicity and the boundary layer. J Anim Ecol 43(1):225–238CrossRefGoogle Scholar
  57. Taylor CE, Powell JR, Kekic V, Andjelkovic M, Burla H (1984) Dispersal rates of species of the Drosophila obscura group: implications for population structure. Evolution 38:1397–1401CrossRefPubMedGoogle Scholar
  58. Tochen S, Dalton DT, Wiman N, Hamm C, Shearer PW, Walton VM (2014) Temperature-related development and population parameters for Drosophila suzukii (Diptera: Drosophilidae) on cherry and blueberry. Environ Entomol 43(2):501–510CrossRefPubMedGoogle Scholar
  59. Tochen S, Walton VM, Lee JC (2016) Impact of floral feeding on adult Drosophila suzukii survival and nutrient status. J Pest Sci 89(3):793–802CrossRefGoogle Scholar
  60. Tonina L, Mori N, Giomi F, Battisti A (2016) Development of Drosophila suzukii at low temperatures in mountain areas. J Pest Sci 89(3):667–678CrossRefGoogle Scholar
  61. Wiman NG, Walton MV, Dalton DT, Anfora G, Burrack HJ, Chiu JC, Daane KM, Grassi A, Miller B, Tochen S, Wang X, Ioriatti C (2014) Integrating temperature-dependent life table data into a matrix projection model for Drosophila suzukii. PLoS ONE 9(9):e106909CrossRefPubMedPubMedCentralGoogle Scholar
  62. Wolfram S (1991) Mathematica, a system for doing mathematics by computer. Math Gaz 77(478):52–70Google Scholar
  63. Yang Y, Zhang Y, Qian Y, Zeng Q (2004) Phylogenetic relationships of Drosophila melanogaster species group deduced from spacer regions of histone gene H2A-H2B. Mol Phylogenet Evol 30:336–343CrossRefPubMedGoogle Scholar
  64. Zhang C, Guihong S, Zhao Y, Yan D, Li H, Liu H, Wiwatanaratanabutr I, Gong M (2016) Evaluation of isotope 32P method to mark Culex pipiens (Diptera: Culicidae) in a laboratory. J Arthropod Borne Dis 10(2):211–221PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Gabriella Tait
    • 1
    • 2
    Email author return OK on get
  • Alberto Grassi
    • 3
  • Ferdinand Pfab
    • 4
  • Cristina M. Crava
    • 1
  • Daniel T. Dalton
    • 5
  • Roger Magarey
    • 6
  • Lino Ometto
    • 7
  • Silvia Vezzulli
    • 1
  • M. Valerio Rossi-Stacconi
    • 3
    • 5
  • Angela Gottardello
    • 3
  • Andrea Pugliese
    • 4
  • Giuseppe Firrao
    • 2
  • Vaughn M. Walton
    • 5
  • Gianfranco Anfora
    • 1
    • 8
  1. 1.Research and Innovation CentreFondazione Edmund MachSan Michele all´AdigeItaly
  2. 2.Department of Agricultural and Environmental SciencesUniversity of UdineUdineItaly
  3. 3.Technology Transfer CentreFondazione Edmund MachSan Michele all´AdigeItaly
  4. 4.Department of MathematicsUniversity of TrentoTrentoItaly
  5. 5.Department of HorticultureOregon State UniversityCorvallisUSA
  6. 6.NSF Center for Integrated Pest ManagementNorth Carolina State UniversityRaleighUSA
  7. 7.MezzocoronaItaly
  8. 8.Center of Agriculture Food Environment (C3A)University of TrentoSan Michele all´AdigeItaly

Personalised recommendations