Journal of Pest Science

, Volume 91, Issue 3, pp 1047–1061 | Cite as

Unravelling pest infestation and biological control in low-input orchards: the case of apple blossom weevil

  • Marcos Miñarro
  • Daniel García
Original Paper


Low-input farming is an alternative production system that provides a great opportunity to disentangle the natural mechanisms regulating crop pests, since neither pests nor their natural enemies are disrupted by pesticides. Here, we use a key apple pest in Europe, the apple blossom weevil (Anthonomus pomorum), as a model case to unravel the factors driving pest infestation and its biological control in a low-input context, namely the cider apple orchards of NW Spain. We applied a holistic approach based on the complete life cycle of the pest and combined large-scale observation (23 orchards) with small-scale experimental assessment. Weevil attack (0.4–37.4% of flowers) increased with the proportion on apple trees in the immediate orchard neighbourhood and with semi-natural woody habitat in the surrounding landscape and decreased with tree distance to orchard edge and apple bloom level. Thus, the prevalence of the pest depended on the availability of the various resources required for foraging, egg-lying and overwintering. Three types of natural enemies supplied complementary pest control by preying on weevils at different stages in their life cycle: seven parasitoid species attacked immature weevils (6.4–81.5%), while the additive effects of birds and crawling arthropods were evident in terms of the removal of adult weevils (31–44%). We conclude that the effective biological control of A. pomorum can be achieved in low-input systems to maintain the pest at non-harmful levels, through combined management of the pest, its habitat and its natural enemies.


Anthonomus pomorum Biodiversity Complementary predation Ecosystem services Insectivorous birds Parasitoids 



We thank Kent Twizell, David Luna, Carlos Guardado, Alejandro González and Alejandro Núñez for technical support; the technicians from Campoastur S. Coop. Asturiana for helping us with orchard selection; the orchard owners for allowing us to work on their orchards; and Vladimir Žikić, Hossein Lotfalizadeh and David Luna for identification of the parasitoid species.


This study was funded by grants INIA-RTA2013-00139-C03-01 (Ministerio de Economía, Industria y Competitividad (MinECo) and Fondo Europeo de Desarrollo Regional) to MM, PCIN2014-145-C02-02 (MinECo; EcoFruit project BiodivERsA-FACCE2014-74) and CGL2015-68963-C2-2-R (MinECo) to DG. Funding sources had no involvement in study design, collection, analysis or interpretation of data, the writing of the report or the decision to submit the article for publication.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

10340_2018_976_MOESM1_ESM.docx (2 mb)
Supplementary material 1 (DOCX 2076 kb)


  1. Agnello A, Cox K, Dominguez L, Francescatto P, Lordan J, Robinson T (2015) An insect, disease and weed management program for New York organic apples. N Y Fruit Q 23(4):27–34Google Scholar
  2. Alves-Silva E, Bächtold A, Barônio GJ, Torezan-Silingardi HM, Del-Claro K (2015) Ant–herbivore interactions in an extrafloral nectaried plant: are ants good plant guards against curculionid beetles? J Nat Hist 49:841–851CrossRefGoogle Scholar
  3. Balázs K, Molnár M, Bujaki G, Gonda I, Karacsony D, Bartha J (1997) Possibility and problems of organic apple growing in Hungary. Biol Agric Hortic 15:223–232CrossRefGoogle Scholar
  4. Benayas JMR, Meltzer J, de las Heras-Bravo D, Cayuela L (2017) Potential of pest regulation by insectivorous birds in Mediterranean woody crops. PLoS ONE 12:e0180702CrossRefGoogle Scholar
  5. Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, Stevens MHH, White JSS (2009) Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol Evol 24:127–135CrossRefPubMedGoogle Scholar
  6. Bommarco R, Kleijn D, Potts SG (2013) Ecological intensification: harnessing ecosystem services for food security. Trends Ecol Evol 28:230–238CrossRefPubMedGoogle Scholar
  7. Bretz F, Hothorn T, Westfall P (2016) Multiple comparisons using R. CRC Press, Boca RatonGoogle Scholar
  8. Brown MW, Szentkiralyi F, Kozar F (1993) Spatial and temporal variation of apple blossom weevil populations (Col., Curculionidae) with recommendations for sampling. J Appl Entomol 115:8–13CrossRefGoogle Scholar
  9. Collatz J, Dorn S (2013) A host-plant-derived volatile blend to attract the apple blossom weevil Anthonomus pomorum–the essential volatiles include a repellent constituent. Pest Manag Sci 69:1092–1098CrossRefPubMedGoogle Scholar
  10. Cross JV, Solomon MG, Babandreier D et al (1999) Biocontrol of pests of apples and pears in northern and central Europe: 2. Parasitoids. Biocontrol Sci Technol 9:277–314CrossRefGoogle Scholar
  11. Cross JV, Fountain M, Markó V, Nagy C (2015) Arthropod ecosystem services in apple orchards and their economic benefits. Ecol Entomol 40:82–96CrossRefGoogle Scholar
  12. Dapena E, Miñarro M, Blázquez MD (2005) Organic cider-apple production in Asturias (NW Spain). IOBC/wprs Bull 28(7):142–146Google Scholar
  13. Duan JJ, Weber DC, Hirs B, Dorn S (1996) Spring behavioral patterns of the apple blossom weevil. Entomol Exp Appl 79:9–17CrossRefGoogle Scholar
  14. FAO (2017) Food and agriculture organization of the United Nations. Accessed 24 Aug 2017
  15. Fitton MG, Shaw MR, Gauld ID (1988) Pimpline ichneumon-flies. Hymenoptera, Ichneumonidae (Pimplinae). In: Handbooks for the identification of British insects, vol 7(1). Royal Entomological Society of London, LondonGoogle Scholar
  16. Földesi R, Kovács-Hostyánszki A, Kőrösi Á et al (2016) Relationships between wild bees, hoverflies and pollination success in apple orchards with different landscape contexts. Agric For Entomol 18:68–75CrossRefGoogle Scholar
  17. FREDON (2006) L’anthonome du pommier, un ravageur à surveiller de près. Fiche technique. Fédération Régionale de Défense contre les Organismes NuisiblesGoogle Scholar
  18. García D, Miñarro M, Martínez-Sastre R (2018) Birds as suppliers of pest control in cider apple orchards: bird biodiversity filters and insectivore effect. Agric Ecosyst Environ 254:233–243CrossRefGoogle Scholar
  19. Garratt MP, Breeze TD, Jenner N, Polce C, Biesmeijer JC, Potts SG (2014) Avoiding a bad apple: insect pollination enhances fruit quality and economic value. Agric Ecosyst Environ 184:34–40CrossRefPubMedPubMedCentralGoogle Scholar
  20. Gillespie MA, Gurr GM, Wratten SD (2016) Beyond nectar provision: the other resource requirements of parasitoid biological control agents. Entomol Exp Appl 159:207–221CrossRefGoogle Scholar
  21. Gomiero T, Pimentel D, Paoletti MG (2011) Environmental impact of different agricultural management practices: conventional vs. organic agriculture. Crit Rev Plant Sci 30:95–124CrossRefGoogle Scholar
  22. Guedes RNC, Smagghe G, Stark JD, Desneux N (2016) Pesticide-induced stress in arthropod pests for optimized integrated pest management programs. Annu Rev Entomol 61:43–62CrossRefPubMedGoogle Scholar
  23. Hausmann C, Samietz J, Dorn S (2004a) Significance of shelter traps for spring monitoring of Anthonomus pomorum in apple orchards. Entomol Exp Appl 112:29–36CrossRefGoogle Scholar
  24. Hausmann C, Samietz J, Dorn S (2004b) Monitoring the dynamics of orchard colonisation by Anthonomus pomorum in spring. Entomol Exp Appl 110:207–216CrossRefGoogle Scholar
  25. Hausmann C, Samietz J, Dorn S (2004c) Visual orientation of overwintered Anthonomus pomorum (Coleoptera: curculionidae). Environ Entomol 33:1410–1415CrossRefGoogle Scholar
  26. INDUROT (2010) Cartografía del manzano en el Principado de Asturias. Consejería de Medio Rural y Pesca. Gobierno del Principado de AsturiasGoogle Scholar
  27. Jonkers H (1979) Biennial bearing in apple and pear: a literature survey. Sci Hortic 11:303–317CrossRefGoogle Scholar
  28. Kelly D (1994) The evolutionary ecology of mast seeding. Trends Ecol Evol 9:465–470CrossRefPubMedGoogle Scholar
  29. Kelly D, Sork VL (2002) Mast seeding in perennial plants: why, how, where? Annu Rev Ecol Syst 33:427–447CrossRefGoogle Scholar
  30. Knuff AK, Obermaier E, Mody K (2017) Differential susceptibility and suitability of domestic and wild apple species for a florivorous weevil and its parasitoids. J Appl Entomol 141:285–299CrossRefGoogle Scholar
  31. Lefebvre M, Franck P, Toubon JF, Bouvier JC, Lavigne C (2016) The impact of landscape composition on the occurrence of a canopy dwelling spider depends on orchard management. Agric Ecosyst Environ 215:20–29CrossRefGoogle Scholar
  32. Lefebvre M, Papaïx J, Mollot G et al (2017) Bayesian inferences of arthropod movements between hedgerows and orchards. Basic Appl Ecol 21:76–84CrossRefGoogle Scholar
  33. Markó V, Elek Z, Kovács-Hostyánszki A et al (2017) Landscapes, orchards, pesticides–Abundance of beetles (Coleoptera) in apple orchards along pesticide toxicity and landscape complexity gradients. Agric Ecosyst Environ 247:246–254CrossRefGoogle Scholar
  34. Marliac G, Mazzia C, Pasquet A, Cornic JF, Hedde M, Capowiez Y (2016) Management diversity within organic production influences epigeal spider communities in apple orchards. Agric Ecosyst Environ 216:73–81CrossRefGoogle Scholar
  35. Martin EA, Reineking B, Seo B, Steffan-Dewenter I (2015) Pest control of aphids depends on landscape complexity and natural enemy interactions. PeerJ 3:e1095CrossRefPubMedPubMedCentralGoogle Scholar
  36. Martin EA, Seo B, Park CR, Reineking B, Steffan-Dewenter I (2016) Scale-dependent effects of landscape composition and configuration on natural enemy diversity, crop herbivory, and yields. Ecol Appl 26:448–462CrossRefPubMedGoogle Scholar
  37. Meland M (2009) Effects of different crop loads and thinning times on yield, fruit quality, and return bloom in Malus × domestica Borkh. ‘Elstar’. J Hortic Sci Biotechnol 84:117–121CrossRefGoogle Scholar
  38. Miles HW (1923) Observations on the bionomics of the apple-blossom weevil, Anthonomus pomorum, Linn. Ann Appl Biol 10:348–369CrossRefGoogle Scholar
  39. Miñarro M (2012) Weed communities in apple orchards under organic and conventional fertilization and tree-row management. Crop Prot 39:89–96CrossRefGoogle Scholar
  40. Miñarro M, Hemptinne J-L, Dapena E (2005) Colonization of apple orchards by predators of Dysaphis plantaginea: sequential arrival, response to prey abundance and consequences for biological control. Biocontrol 50:403–414CrossRefGoogle Scholar
  41. Miñarro M, Espadaler X, Melero VX, Suárez-Álvarez V (2009) Organic versus conventional management in an apple orchard: effects of fertilization and tree-row management on ground-dwelling predaceous arthropods. Agric For Entomol 11:133–142CrossRefGoogle Scholar
  42. Miranda C, Santesteban LG, Royo JB (2005) Removal of the most developed flowers influences fruit set, quality, and yield of apple clusters. HortSci 40:353–356Google Scholar
  43. Mody K, Spoerndli C, Dorn S (2011) Within-orchard variability of the ecosystem service ‘parasitism’: effects of cultivars, ants and tree location. Basic Appl Ecol 12:456–465CrossRefGoogle Scholar
  44. Mody K, Collatz J, Dorn S (2015) Plant genotype and the preference and performance of herbivores: cultivar affects apple resistance to the florivorous weevil Anthonomus pomorum. Agric For Entomol 17:337–346CrossRefGoogle Scholar
  45. Mody K, Collatz J, Bucharova A, Dorn S (2017) Crop cultivar affects performance of herbivore enemies and may trigger enhanced pest control by coaction of different parasitoid species. Agric Ecosyst Environ 245:74–82CrossRefGoogle Scholar
  46. Mols CM, Visser ME (2002) Great tits can reduce caterpillar damage in apple orchards. J Appl Ecol 39:888–899CrossRefGoogle Scholar
  47. Monteiro LB, Lavigne C, Ricci B, Franck P, Toubon JF, Sauphanor B (2013) Predation of codling moth eggs is affected by pest management practices at orchard and landscape levels. Agric Ecosyst Environ 166:86–93CrossRefGoogle Scholar
  48. Oste-Lédée S, Desprez MC, Emery D (2001) Anthonome du pommier (Anthonomus pomorum L.). Recherche de stratégie de lutte en verger de production biologique. L’Arboriculture Fruit 551:51–56Google Scholar
  49. Parsa S, Morse S, Bonifacio A et al (2014) Obstacles to integrated pest management adoption in developing countries. PNAS 111:3889–3894CrossRefPubMedPubMedCentralGoogle Scholar
  50. Parveaud C-E, Brenner J, Stoeffel A, Corroyer N (2016) Anthonome du pommier en agriculture biologique. Technical brochureGoogle Scholar
  51. Prieditis A (1975) Natural enemies of the apple blossom weevil (Anthonomus pomorum). Augu Aizsardz Probl 84:17–27Google Scholar
  52. Pywell RF, Heard MS, Woodcock BA, Hinsley S, Ridding L, Nowakowski M, Bullock JM (2015) Wildlife-friendly farming increases crop yield: evidence for ecological intensification. Proc R Soc B 282:20151740CrossRefPubMedPubMedCentralGoogle Scholar
  53. Reganold JP, Wachter JM (2016) Organic agriculture in the twenty-first century. Nat Plants 2:15221CrossRefPubMedGoogle Scholar
  54. Regnier R (1923) De quelques grands ennemis du Pommier et de leurs Parasites. Revue de botanique appliquée et d’agriculture coloniale 3:169–185CrossRefGoogle Scholar
  55. Rusch A, Chaplin-Kramer R, Gardiner MM et al (2016) Agricultural landscape simplification reduces natural pest control: a quantitative synthesis. Agric Ecosyst Environ 221:198–204CrossRefGoogle Scholar
  56. Samach A, Smith HM (2013) Constraints to obtaining consistent annual yields in perennials. II: environment and fruit load affect induction of flowering. Plant Sci 207:168–176CrossRefPubMedGoogle Scholar
  57. Sidhu CS, Joshi NK (2016) Establishing wildflower pollinator habitats in agricultural farmland to provide multiple ecosystem services. Front Plant Sci 7:363CrossRefPubMedPubMedCentralGoogle Scholar
  58. Simon S, Bouvier JC, Debras JF, Sauphanor B (2010) Biodiversity and pest management in orchard systems. A review. Agron Sustain Dev 30:139–152CrossRefGoogle Scholar
  59. Singer MS, Clark RE, Lichter-Marck IH, Johnson ER, Mooney KA (2017) Predatory birds and ants partition caterpillar prey by body size and diet breadth. J Anim Ecol 86:1363–1371CrossRefPubMedGoogle Scholar
  60. Toepfer S, Gu H, Dorn S (1999) Spring colonisation of orchards by Anthonomus pomorum from adjacent forest borders. Entomol Exp Appl 93:131–139CrossRefGoogle Scholar
  61. Toepfer S, Gu H, Dorn S (2000) Selection of hibernation sites by Anthonomus pomorum: preferences and ecological consequences. Entomol Exp Appl 95:241–249CrossRefGoogle Scholar
  62. Tscharntke T, Tylianakis JM, Rand TA et al (2012) Landscape moderation of biodiversity patterns and processes eight hypotheses. Biol Rev 87:661–685CrossRefPubMedGoogle Scholar
  63. Walker JT, Suckling DM, Wearing CH (2017) Past, present, and future of integrated control of apple pests: the New Zealand experience. Annu Rev Entomol 62:231–248CrossRefPubMedGoogle Scholar
  64. Wratten SD, Gillespie M, Decourtye A, Mader E, Desneux N (2012) Pollinator habitat enhancement: benefits to other ecosystem services. Agric Ecosyst Environ 159:112–122CrossRefGoogle Scholar
  65. Zijp JP, Blommers LHM (1992) Syrrhizus delusorius and Scambus pomorum, two parasitoids of the apple blossom weevil. Proceed Exp Appl Entomol 3:46–50Google Scholar
  66. Zuur A, Ieno EN, Walker N, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer, New YorkCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA)VillaviciosaSpain
  2. 2.Departamento de Biología de Organismos y SistemasUniversidad de Oviedo, y Unidad Mixta de Investigación en Biodiversidad (CSIC-Uo-PA)OviedoSpain

Personalised recommendations