Advertisement

Journal of Pest Science

, Volume 91, Issue 2, pp 789–798 | Cite as

Is Drosophila suzukii as susceptible to entomopathogenic nematodes as Drosophila melanogaster?

  • Anna Garriga
  • Ana Morton
  • Fernando Garcia-del-Pino
Original Paper

Abstract

Drosophila suzukii (Matsumura) (Diptera: Drosophilidae) is the major invasive pest of small, soft-skinned and stone fruits, with a wide range of hosts. This study aims to test the susceptibility of this insect to entomopathogenic nematodes (EPNs) and their efficacy on infested fruits from first instar larvae to adult emergence. Drosophila suzukii and D. melanogaster (Meigen) (Diptera: Drosophilidae) were susceptible to Steinernema carpocapsae (Weiser) (Rhabditida: Steinernematidae), S. feltiae (Filipjev) (Rhabditida: Steinernematidae), Steinernema sp. (glaseri group) (Filipjev) (Rhabditida: Steinernematidae) and Heterorhabditis bacteriophora (Poinar) (Rhabditida: Heterorhabditidae) on two substrates (filter paper and agar). The greater efficacy against D. suzukii was achieved by S. feltiae and S. carpocapsae (94 and 84%, respectively) with equal efficacy than that obtained using D. melanogaster as host (93.37 and 92.88%, respectively). The EPNs infected and could reproduce inside D. suzukii larvae. In contrast, pupae of both species were not infected by them. Nematodes proved to be able to reduce adult emergence of D. suzukii (up to 35% by S. feltiae) on strawberry fruit under laboratory conditions. These results show that D. suzukii is as susceptible as D. melanogaster to EPNs, confirming the potential of these nematodes as biological control agents against this important pest.

Keywords

Entomopathogenic nematode Biological control Steinernematidae Heterorhabditidae 

Notes

Acknowledgements

We are especially grateful to IRTA-Cabrils for providing the adults of D. suzukii. We would like to thank the Unit of Genetics of the Universitat Autonòma de Barcelona for providing the adults of D. melanogaster, the drosophila diet and technical support for rearing. We thank José Antonio Pérez from the Servicio de Sanidad Vegetal (Junta de Extremadura) for providing the soil for the isolation of the strain Ext4 of S. feltiae. We also thank Magda Galeano from Koppert, for providing the commercial strain of H. bacteriophora Larvanem®. Finally, we thank the anonymous referees and editor for their constructive comments to improve this paper.

Funding

The research presented in this paper was partially funded by a Spanish Ministerio de Educación y Ciencia Project (AGL2011-24194).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national and/or institutional guidelines for the care and use of animals were followed.

References

  1. Abbott WS (1925) A method of computing effectiveness of an insecticide. J Econ Entomol 18:265–267CrossRefGoogle Scholar
  2. Arnó J, Solà M, Riudavets J, Gabarra R (2016) Population dynamics, non-crop hosts, and fruit susceptibility of Drosophila suzukii in Northeast Spain. J Pest Sci 89:713–723CrossRefGoogle Scholar
  3. Asplen MK, Anfora G, Biondi A, Choi DS, Chu D, Daane KM, Gibert P, Gutierrez AP, Hoelmer KA, Hutchison WD, Isaacs R, Jiang Z-L, Kárpáti Z, Kimura MT, Pascual M, Philips CR, Plantamp C, Ponti L, Vétek G, Vogt H, Walton VM, Yu Y, Zappalà L, Desneux N (2015) Invasion biology of spotted-wing Drosophila (Drosophila suzukii): a global perspective and future priorities. J Pest Sci 88:469–494CrossRefGoogle Scholar
  4. Bastidas B, Portillo E, San-Blas E (2014) Size does matter: the life cycle of Steinernema spp. in micro-insect hosts. J Invertebr Pathol 121:46–55CrossRefPubMedGoogle Scholar
  5. Batalla-Carrera L, Morton A, Garcia-del-Pino F (2010) Efficacy of entomopathogenic nematodes against the tomato leafminer Tuta absoluta in laboratory and greenhouse conditions. Biocontrol 55:523–530CrossRefGoogle Scholar
  6. Begley JW (1990) Efficacy against insects in habitats others than soil. In: Gaugler R, Kaya HK (eds) Entomopathogenic nematodes in biological control. CRC Press, Boca Raton, pp 215–231Google Scholar
  7. Bruck DJ, Bolda M, Tanigoshi L, Klick J, Kleiber J, DeFrancesco J, Gerdeman B, Spitler H (2011) Laboratory and field comparisons of insecticides to reduce infestation of Drosophila suzukii in berry crops. Pest Manag Sci 67:1375–1385CrossRefPubMedGoogle Scholar
  8. Caroli L, Glazer I, Gaugler R (1996) Entomopathogenic nematode infectivity assay: comparison of penetration rate into different hosts. Biocontrol Sci Technol 6:227–233CrossRefGoogle Scholar
  9. Chabert S, Allemand R, Poyet M, Eslin P, Gibert P (2012) Ability of European parasitoids (Hymenoptera) to control a new invasive Asiatic pest, Drosophila suzukii. Biol Control 63:40–47CrossRefGoogle Scholar
  10. Chen S, Han X, Moens M (2003) Biological control of Delia radicum (Diptera: Anthomyiidae) with entomopathogenic nematodes. Appl Entomol Zool 38(4):441–448CrossRefGoogle Scholar
  11. Cini A, Ioratti C, Anfora G (2012) A review of the invasion of Drosophila suzukii in Europe and a draft research agenda for integrated pest management. Bull Insectol 65:149–160Google Scholar
  12. Cuthbertson AGS, Audsley N (2016) Further screening of entomopathogenic fungi and nematodes as control agents for Drosophila suzukii. Insects 7:24CrossRefPubMedCentralGoogle Scholar
  13. Cuthbertson AGS, Collins DA, Blackburn LF, Audsley NA, Bell HA (2014a) Preliminary screening of potential control products against Drosophila suzukii. Insects 5:488–498CrossRefPubMedPubMedCentralGoogle Scholar
  14. Cuthbertson AGS, Blackburn LF, Audsley N (2014b) Efficacy of commercially available invertebrate predators against Drosophila suzukii. Insects 5:952–960CrossRefPubMedPubMedCentralGoogle Scholar
  15. Daane KM, Wang XG, Biondi A, Miller B, Miller JC, Riedl H, Shearer PW, Guerrieri E, Giorgini M, Buffington M, van Achterberg K, Song Y, Kang T, Yi H, Jung C, Lee DW, Chung BK, Hoelmer KA, Walton VW (2016) First foreign exploration for Asian parasitoids of Drosophila suzukii. J Pest Sci 89(3):823–835CrossRefGoogle Scholar
  16. De Ros G, Anfora G, Grassi A, Ioriatti C (2013) The potential economic impact of Drosophila suzukii on small fruits production in Trentino (Italy). IOBC-WPRS Bull 91:317–321Google Scholar
  17. Diepenbrock LM, Swoboda-Bhattarai KA, Burrack HJ (2016) Ovipositional preference, fidelity, and fitness of Drosophila suzukii in a co-occurring crop and non-crop host system. J Pest Sci 89:761–769CrossRefGoogle Scholar
  18. Dobes P, Wang Z, Markus R, Theopold U, Hyrsl P (2012) An improved method for nematode infection assays in Drosophila larvae. Fly 6:75–79CrossRefPubMedPubMedCentralGoogle Scholar
  19. Ebrahimi L, Shiri MR, Dunphy GB (2016) Efficacy of the entomopathogenic nematode, Steinernema feltiae against the vegetable leaf miner, Liriomyza sativae Blanchard (Diptera: Agromyzidae). Egypt J Biol Pest Control 26(3):583–586Google Scholar
  20. Epsky ND, Capinera JL (1994) Invasion efficiency as a measure of efficacy of the entomopathogenic nematode Steinernema carpocapsae (Rhabditidae: Steinernematidae). J Econ Entomol 87:366–370CrossRefGoogle Scholar
  21. Gabarra R, Riudavets J, Rodriguez GA, Pujade-Villar J, Arnó J (2015) Prospects for the biological control of Drosophila suzukii. Biocontrol 60:331–339CrossRefGoogle Scholar
  22. Gaugler R, Campbell JF, McGuire TR (1990) Fitness of a genetically improved entomopathogenic nematode. J Invertebr Pathol 56:106–116CrossRefGoogle Scholar
  23. Glazer I, Alekseev E, Samish M (2001) Factors affecting the virulence of entomopathogenic nematodes to engorged female Boophilus annulatus ticks. J Parasitol 87:808–812CrossRefPubMedGoogle Scholar
  24. Goodhue RE, Bolda M, Farnsworth D, Williams JC, Zalom FG (2011) Spotted wing drosophila infestation of California strawberries and raspberries: economic analysis of potential revenue losses and control costs. Pest Manag Sci 67:1396–1402CrossRefPubMedGoogle Scholar
  25. Hamby KA, Becher PG (2016) Current knowledge of interactions between Drosophila suzukii (Diptera: Drosophilidae) and microbes, and their potential utility for pest management. J Pest Sci 89(3):621–630CrossRefGoogle Scholar
  26. Hamby KA, Bellamy D, Chiu JC, Lee JC, Walton VM, Wiman NG, York RM, Biondi A (2016) Biotic and abiotic factors impacting development, behavior, phenology, and reproductive biology of Drosophila suzukii. J Pest Sci 89(3):605–619CrossRefGoogle Scholar
  27. Haye T, Girod P, Cuthbertson AGS, Wang XG, Daane KM, Hoelmer KA, Baroffio C, Zhang JP, Desneux N (2016) Current SWD IPM tactics and their practical implementation in fruit crops across different regions around the world. J Pest Sci 89:643–651CrossRefGoogle Scholar
  28. Hominick WM, Reid AP (1990) Perspectives of entomopathogenic nematology. In: Gaugler R, Kaya HK (eds) Entomopathogenic nematodes biological control. CRC Press, Boca Raton, pp 327–343Google Scholar
  29. Hübner A, Englert C, Herz A (2017) Effect of entomopathogenic nematodes on different developmental stages of Drosophila suzukii in and outside fruits. Biocontrol. doi: 10.1007/s10526-017-9832-x Google Scholar
  30. Kanzawa T (1939) Studies on Drosophila suzukii mats. Yamanashi Agricultural Experimental Station, KofuGoogle Scholar
  31. Kawase S, Uchino K, Yasuda M, Motoori S (2008) Netting control of cherry Drosophila Drosophila suzukii injurious to blueberry. Bull Chiba Prefect Agric Res Cent 7:9–15Google Scholar
  32. Kenis M, Tonina L, Eschen R, van der Sluis B, Sancassani M, Mori N, Haye T, Helsen H (2016) Non-crop plants used as hosts by Drosophila suzukii in Europe. J Pest Sci 89:735–748CrossRefGoogle Scholar
  33. Klein MG (1990) Efficacy against soil-inhabiting insect pests. In: Gaugler R, Kaya HK (eds) Entomopathogenic nematodes biological control. CRC Press, Boca Raton, pp 195–214Google Scholar
  34. Langford EA, Nielsen UN, Johnson SN, Riegler M (2014) Susceptibility of Queensland fruit fly, Bactrocera tryoni (Froggatt) (Diptera: Tephritidae), to entomopathogenic nematodes. Biol Control 69:34–39CrossRefGoogle Scholar
  35. Lee JC, Bruck DJ, Dreves AJ, Ioriatti C, Vogt H, Baufeld P (2011) In focus: spotted wing drosophila, Drosophila suzukii, across perspectives. Pest Manag Sci 67:1349–1351CrossRefPubMedGoogle Scholar
  36. Lindegren JE, Meyer KF, Henneberry TJ, Vail PV, Forlow Jech LJ, Valero KA (1993) Susceptibility of pink bollworm (Lepidoptera: Gelechiidae) soil associated stages to the entomopathogenic nematode Steinernema carpocapsae (Rhabditida: Steinernematidae). Southwest Entomol 18:113–120Google Scholar
  37. Ma J, Chen S, Moens M, Han R, De Clercq P (2013) Efficacy of entomopathogenic nematodes (Rhabditida: Steinernematidae and Heterorhabditidae) against the chive gnat, Bradysia odoriphaga. J Pest Sci 86:551–561CrossRefGoogle Scholar
  38. Mahmoud MF, Mandour NS, Pomazkov YI (2007) Efficacy of the entomopathogenic nematode Sterneinema feltiae cross N33 against larvae and pupae of four fly species in the laboratory. Nematol Medit 35:221–226Google Scholar
  39. Mazzetto F, Marchetti E, Amiresmaeili N, Sacco D, Francati S, Jucker C, Dindo ML, Lupi D, Tavella L (2016) Drosophila parasitoids in northern Italy and their potential to attack the exotic pest Drosophila suzukii. J Pest Sci 89(3):837–850CrossRefGoogle Scholar
  40. Morton A, Garcia-del-Pino F (2007) Susceptibility of shore fly Scatella stagnalis to five entomopathogenic nematode strains in bioassays. Biocontrol 4:533–545CrossRefGoogle Scholar
  41. Peña JM, Carrillo MA, Hallem EA (2015) Variation in the susceptibility of Drosophila to different entomopathogenic nematodes. Infect Immun 83:1130–1138CrossRefPubMedPubMedCentralGoogle Scholar
  42. Peters A (1996) The natural host range of Steinernema and Heterorhabditis spp. and their impact on insect populations. Biocontrol Sci Technol 6:389–402CrossRefGoogle Scholar
  43. Rogers MA, Burkness EC, Hutchison WD (2016) Evaluation of high tunnels for management of Drosophila suzukii in fall-bearing red raspberries: Potential for reducing insecticide use. J Pest Sci 89(3):815–821CrossRefGoogle Scholar
  44. Rossi-Stacconi MV, Grassi A, Dalton DT, Miller B, Ouantar M, Loni A, Ioriatti C, Walton VM, Anfora G (2013) First field records of Pachycrepoideus vindemiae as a parasitoid of Drosophila suzukii in European and Oregon Small fruit production areas. Entomologia 1:e3CrossRefGoogle Scholar
  45. Svendsen TS, Steenberg T (2000) The potential use of entomopathogenic nematodes against Typhaea stercorea. Biocontrol 45:97–111CrossRefGoogle Scholar
  46. Van Timmeren S, Isaacs R (2013) Control of spotted wing drosophila, Drosophila suzukii, by specific insecticides and by conventional and organic crop protection programs. Crop Prot 54:126–133CrossRefGoogle Scholar
  47. Walsh DB, Bolda MP, Goodhue RE, Dreves AJ, Lee J, Bruck DJ, Walton VM, O’Neal SD, Zalom FG (2011) Drosophila suzukii (Diptera: Drosophilidae): invasive pest of ripening soft fruit expanding its geographic range and damage potential. J Integ Pest Manag 2:1–7CrossRefGoogle Scholar
  48. Wang X, Kaçar G, Biondi A, Daane KM (2016) Foraging efficiency and outcomes of interactions of two pupal parasitoids attacking the invasive spotted wing drosophila. Biol Control 96:64–71CrossRefGoogle Scholar
  49. White GF (1927) A method for obtaining infective nematode larvae from cultures. Science 66:302–303CrossRefPubMedGoogle Scholar
  50. Wiman NG, Dalton DT, Anfora G, Biondi A, Chiu JC, Daane KM, Gerdeman B, Gottardello A, Hamby KA, Isaacs R, Grassi A, Ioriatti C, Lee JC, Miller B, Rossi-Stacconi MV, Shearer PW, Tanigoshi L, Wang XG, Walton VM (2016) Drosophila suzukii population response to environment and management strategies. J Pest Sci 89(3):653–665CrossRefGoogle Scholar
  51. Woltz JM, Donahue KM, Bruck DJ, Lee JC (2015) Efficacy of commercially available predators, nematodes and fungal entomopathogens for augmentative control of Drosophila suzukii. J Appl Entomol 139:759–770CrossRefGoogle Scholar
  52. Woodring JL, Kaya HK (1998) Steinernematid and heterorhabditid nematodes: a handbook of techniques. South Cooper Bull 331:1–30Google Scholar
  53. Zhang C-L, Zhang Y-H, He W-Y, Huang J-B, Zhou L-Y, Ning H, Wu Z-P, Wang D-N, Ke D-C (2011) Integrated control technology of cherry fruit flies and experimental demonstration in Aba, Sichuan province. China Plant Prot 31:2628Google Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Departament de Biologia Animal, Biologia Vegetal i Ecologia, Facultat de BiociènciesUniversitat Autònoma de BarcelonaBellaterra, BarcelonaSpain

Personalised recommendations