Skip to main content
Log in

Overstinging by hymenopteran parasitoids causes mutilation and surplus killing of hosts

  • Original Paper
  • Published:
Journal of Pest Science Aims and scope Submit manuscript

Abstract

An appraisal of the regulatory role of natural enemies on target pests requires the identification of the mechanisms/traits that enhance the ability of an organism to control the density of its prey/host. After stinging herbivore hosts with their ovipositor, hymenopteran parasitoids tend to reject them without ovipositing or host-feeding. Termed pseudoparasitism, the frequency and consequences of this type of attack (hereafter oversting) have been largely disregarded in the hymenopteran parasitoid literature. We choose the parasitoids Aphytis melinus and A. chrysomphali and their common host Aonidiella aurantii as a model system to study this behavior. Using field and laboratory observations, we showed that overstinging is a common behavior in the wild. Under controlled conditions, overstinging occurred more frequently than host-feeding, a behavioral trait that is used to evaluate the potential of parasitoids as biological control agents. Oversting reduced the fecundity and survival of the herbivore host. When we compared between parasitoid species that attack the same host species, the virulence and frequency of this behavior depended on parasitoid species. These results demonstrate that overstinging should be incorporated in the models of host–parasitoid interactions to analyze population dynamics as well as in the future selection of parasitoids for biological control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abdelrahman I (1974) Growth, development and innate capacity for increase in Aphytis chrysomphali Mercet and A. melinus DeBach, parasites de California red scale, Aonidiella aurantii (Mask.), in relation to temperature. Aust J Zool 22:213–230

    Article  Google Scholar 

  • Abram PK, Brodeur J, Burte V, Boivin G (2016) Parasitoid-induced host egg abortion: an underappreciated component of biological control services provided by egg parasitoids. Biol Control 98:52–60

    Article  Google Scholar 

  • Asgari S, Rivers DB (2011) Venom proteins from endoparasitoid wasps and their role in host-parasite interactions. Annu Rev Entomol 56:313–335

    Article  CAS  PubMed  Google Scholar 

  • Barratt BI, Johnstone PD (2001) Factors affecting parasitism by Microctonus aethiopoides (Hymenoptera: Braconidae) and parasitoid development in natural and novel host species. Bull Entomol Res 91:245–253

    Article  CAS  PubMed  Google Scholar 

  • Barrett B, Brunner J (1990) Types of parasitoid-induced mortality, host stage preferences, and sex ratios exhibited by Pnigalio flavipes (Hymenoptera: Eulophidae) using Phyllonorycter elmaella (Lepidoptera: Gracillaridae) as a host. Environ Entomol 19:803–807

    Article  Google Scholar 

  • Baudoin M (1975) Host castration as a parasitic strategy. Evolution 29:335–352

    Article  PubMed  Google Scholar 

  • Beard R (1940) Parasitic castration of Anasa tristis DeG. by Trichopoda pennipes Fab., and its effect on reproduction. J Econ Entomol 33:269–272

    Article  Google Scholar 

  • Beckage NE (2008) Parasitoid polydnaviruses and insect immunity. In: Beckage NE (ed) Insect immunology. Academic Press/Elsevier, San Diego, pp 243–270

    Chapter  Google Scholar 

  • Beckage NE, Gelman DB (2004) Wasp parasitoid disruption of host development: implications for new biologically based strategies for insect control. Annu Rev Immunol 21:759–806

    Google Scholar 

  • Boyero J, Vela J, Wong E, Garcia-Ripoll C, Verdú MJ, Urbaneja A, Vanaclocha P (2014) Displacement of Aphytis chrysomphali by Aphytis melinus, parasitoids of the California red scale, in the Iberian Peninsula. Span JAgric Res 12:244–251

    Article  Google Scholar 

  • Brown JJ, Kainoh Y (1992) Host castration by Ascogaster sp. (Hymenoptera: Braconidae). Ann Entomol Soc Am 85:67–71

    Article  Google Scholar 

  • Casas J, Swarbrick S, Murdoch WW (2004) Parasitoid behaviour: predicting field from laboratory. Ecol Entomol 29:657–665

    Article  Google Scholar 

  • Cebolla R, Bru P, Urbaneja A, Tena A (2017) Does host quality dictate the outcome of interference competition between sympatric parasitoids? Effects on their coexistence. Anim Behav 127:75–81

    Article  Google Scholar 

  • Crawley MJ (2007) The R book. Wiley, New York

    Book  Google Scholar 

  • DeBach P, Sisojevic P (1960) Some effects of temperature and competition on the distribution and relative abundance of Aphytis lingnanensis and A. chrysomphali (Hymenoptera: Aphelinidae). Ecology 41:153–160

    Article  Google Scholar 

  • Digilio MC, Isidoro N, Tremblay E, Pennacchio F (2000) Host castration by Aphidius ervi venom proteins. J Insect Physiol 46:1041–1050

    Article  CAS  PubMed  Google Scholar 

  • Godfray HCJ (1994) Parasitoids Behavioral and evolutionary ecology. Princeton University Press, Princeton

    Google Scholar 

  • Gottlieb Y, Zchori-Fein E, Faktor O, Rosen D (1998) Phylogenetic analysis of parthenogenesis-inducing Wolbachia in the genus Aphytis (Hymenoptera: Aphelinidae). Insect Mol Biol 7:393–396

    Article  CAS  PubMed  Google Scholar 

  • Heimpel GE, Collier TR (1996) The evolution of host-feeding behaviour in insect parasitoids. Biol Rev 71:373–400

    Article  Google Scholar 

  • Heimpel G, Rosenheim J, Mangel M (1998) Effects of time limitation and egg limitation on lifetime reproductive success of a parasitoid in the field. Am Nat 152:273–289

    Article  CAS  PubMed  Google Scholar 

  • Hopper KR, Prager SM, Heimpel GE (2013) Is parasitoid acceptance of different host species dynamic? Funct Ecol 27:1201–1211

    Article  Google Scholar 

  • Jervis MA (2005) Insects as natural enemies: a practical perspective. Springer, New York

    Book  Google Scholar 

  • Johnson D, Akre BG, Crowley PH (1975) Modeling arthropod predation: wasteful killing by damselfly naiads. Ecology 56:1081–1093

    Article  Google Scholar 

  • Jones D (1985) Parasite regulation of host insect metamorphosis: a new form of regulation in pseudoparasitized larvae of Trichoplusia ni. J Comp Physiol 155:583–590

    Article  CAS  Google Scholar 

  • Jones D, Jones G, Rudnicka M, Click A, Malleczewen VR, Iwaya M (1986) Pseudoparasitism of host Trichoplusia ni by Chelonus spp. as a new model system for parasite regulation of host physiology. J Insect Physiol 32:315–328

    Article  Google Scholar 

  • Keinan Y, Kishinevsky M, Segoli M, Keasar T (2012) Repeated probing of hosts: an important component of superparasitism. Behav Ecol 23:1263–1268

    Article  Google Scholar 

  • Mills NJ, Wajnberg É (2008) Optimal foraging behavior and efficient biological control methods. In: Wajnberg E, Bernstein C, van Alphen JJM (eds) Behavioral ecology of insect parasitoids: from theoretical approaches to field applications. Blackwell Science, Oxford, pp 3–30

    Google Scholar 

  • Monzó C, Molla Ó, Castañera P, Urbaneja A (2009) Activity-density of Pardosa cribata in Spanish citrus orchards and its predatory capacity on Ceratitis capitata and Myzus persicae. Biocontrol 54:393–402

    Article  Google Scholar 

  • Münster-Swendsen M (1994) Pseudoparasitism: detection and ecological significance in Epinotia tedella (Cl.) (Tortricidae). Nor J Agric Sci Suppl 16:329–335

    Google Scholar 

  • Münster-Swendsen M (2002) Population cycles of the spruce needle-miner in Denmark driven by interactions with insect parasitoids. In: Berryman A (ed) Population cycles. The case for trophic interactions. Oxford University Press, Oxford, pp 29–43

    Google Scholar 

  • Münster-Swendsen M, Berryman A (2005) Detecting the causes of population cycles by analysis of R-functions: the spruce needle-miner, Epinotia tedella, and its parasitoids in Danish spruce plantations. Oikos 108:495–502

    Article  Google Scholar 

  • Murdoch WW, Luck RF, Swarbrick SL, Walde S, Yu DS (1995) Regulation of an insect population under biological control. Ecology 76:206–217

    Article  Google Scholar 

  • Murdoch WW, Briggs CJ, Nisbet RM (1996) Competitive displacement and biological control in parasitoids: a model. Am Nat 184:807–826

    Article  Google Scholar 

  • Murdoch WW, Briggs CJ, Nisbet RM (1997) Dynamical effects of host-size and parasitoid state-dependent attacks by parasitoids. J Anim Ecol 66:542–556

    Article  Google Scholar 

  • Murdoch WW, Briggs CJ, Swarbrick SL (2005) Host suppression and stability in a parasitoid-host system: experimental demonstration. Science 309:610–613

    Article  CAS  PubMed  Google Scholar 

  • Neuenschwander P, Schulthess F, Madojemu E (1986) Experimental evaluation of the efficiency of Epidinocarsis lopezi, a parasitoid introduced into Africa against the cassava mealybug Phenacoccus manihoti. Entomol Exp App 42:133–138

    Article  Google Scholar 

  • Pekár S (2005) Predatory characteristics of ant-eating Zodarion spiders (Araneae: Zodariidae): potential biological control agents. Biol Control 34:196–203

    Article  Google Scholar 

  • Pekas A, Aguilar A, Tena A, Garcia-Marí F (2010) Influence of host size on parasitism by Aphytis chrysomphali and A. melinus (Hymenoptera: Aphelinidae) in Mediterranean populations of California red scale Aonidiella aurantii (Hemiptera: Diaspididae). Biol Control 55:132–140

    Article  Google Scholar 

  • Pekas A, Tena A, Harvey JA, Garcia-Marí F, Frago E (2016) Host size and spatiotemporal patterns mediate the coexistence of specialist parasitoids. Ecology 37:1345–1356

    Article  Google Scholar 

  • Pérez-Hedo M, Urbaneja A (2015) Prospects for predatory mirid bugs as biocontrol agents of aphids in sweet peppers. J Pest Sci 88:65–73

    Article  Google Scholar 

  • Pina T (2007) Control biológico del piojo rojo de California, Aonidiella aurantii (Maskell) (Hemiptera: Diaspididae) y estrategias reproductivas de su principal enemigo natural Aphytis chrysompahli (Mercet) (Hymenoptera: Aphelinidae). Dissertation, Universidad de Valencia, Valencia

  • Rasband WS (2016). ImageJ. Bethesda, MD: U.S. National Institutes of Health. http://imagej.nih.gov/ij

  • Reed-larsen DA, Brown JJ (1990) Embryonic castration of the codling moth Cydia pomonella by an endoparasitoid, Ascogaster quadridentata. J Insect Physiol 36:111–118

    Article  Google Scholar 

  • Rosen D, DeBach P (1979) Species of Aphytis of the world (Hym.: Aphelinidae). Israel Universities Press, Jerusalem

    Book  Google Scholar 

  • Salt G (1968) The resistance of insect parasitoids to the defence reactions of their hosts. Biol Rev 43:200–232

    Article  CAS  PubMed  Google Scholar 

  • Schlaepfer MA, Sherman PW, Blossey B, Runge MC (2005) Introduced species as evolutionary traps. Ecol Lett 8:241–246

    Article  Google Scholar 

  • Schlinger EI, Hall JC (1960) The biology, behaviour, and morphology of Praon palitans Muesebek, an internal parasite of the spotted alfalfa aphid, Therioaphis maculata (Buckton) (Hymenoptera: Braconidae, Aphidiinae). Ann Entomol Soc Am 53:144–160

    Article  Google Scholar 

  • Shea K, Nisbet RM, MurdochWW Yoo HJS (1996) The effect of egg limitation on stability in insect host-parasitoid population models. J Anim Ecol 65:743–755

    Article  Google Scholar 

  • Sorribas J, Rodríguez R, Garcia-Marí F (2010) Parasitoid competitive displacement and coexistence in citrus agroecosystems: linking species distribution with climate. Ecol Appl 20:1101–1113

    Article  PubMed  Google Scholar 

  • Spencer H (1926) Biology of the parasites and hyperparasites of aphids. Ann Entomol Soc Am 19:119–157

    Article  Google Scholar 

  • Strand MR (1986) The physiological interactions of parasitoids with their hosts and their influence on reproductive strategies. Insect parasitoids. Academic Press, London, pp 97–136

    Google Scholar 

  • Tagashira E, Tanaka T (1998) Parasitic castration of Pseudaletia separata by Cotesia kariyai and its association with polydnavirus gene expression. J Insect Physiol 44:733–744

    Article  CAS  PubMed  Google Scholar 

  • Tena A, Pekas A, Wäckers FL, Urbaneja A (2013) Energy reserves of parasitoids depend on honeydew from non-hosts. Ecol Entomol 38:278–289

    Article  Google Scholar 

  • van Driesche RG, Bellotti A, Herrera CJ, Castello JA (1987) Host feeding and ovipositor insertion as sources of mortality in the mealybug Phenacoccus herreni caused by two encyrtids, Epidinocarsis diversicornis and Acerophagus coccois. Entomol Exp Appl 44:97–100

    Article  Google Scholar 

  • Vanaclocha P (2012) Gestión integrada del piojo rojo de California, Aonidiella aurantii (Maskell) (Hemiptera: Diaspididae): Mejora de su control biológico. Dissertation, Universitat Jaume I, Castellón

  • Vinson SB (1976) Host selection by insect parasitoids. Annu Rev Entomol 21:109–133

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge Jérôme Casas and an anonymous reviewer for valuable comments. The research has received funding from the Spanish Ministry of Science and Innovation (AGL2011-30538-C03) and the Conselleria d’Agricultura, Pesca i Alimentació de la Generalitat Valenciana. The authors thank R. Romero and C. Ramos for their help with the statistical analyses and P. Bru (IVIA) for technical assistance with the experiments. R.C. was supported by a FPI scholarship from the Spanish Ministry of Science and Innovation (MICINN).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro Tena.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by V. Gagic.

Annex

Annex

Annex 1 Correlation matrix between all variables to select them for the multiple correlation analysis
figure a

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cebolla, R., Vanaclocha, P., Urbaneja, A. et al. Overstinging by hymenopteran parasitoids causes mutilation and surplus killing of hosts. J Pest Sci 91, 327–339 (2018). https://doi.org/10.1007/s10340-017-0901-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10340-017-0901-9

Keywords

Navigation