Journal of Pest Science

, Volume 91, Issue 1, pp 373–384 | Cite as

Interactions between entomopathogenic fungi and Tamarixia radiata (Hymenoptera: Eulophidae) in Diaphorina citri (Hemiptera: Liviidae) populations under laboratory conditions

  • Karla H. Ibarra-Cortés
  • Héctor González-Hernández
  • Ariel W. Guzmán-FrancoEmail author
  • Laura D. Ortega-Arenas
  • Juan A. Villanueva-Jiménez
  • Agustín Robles-Bermúdez
Original Paper


Biological control of Diaphorina citri (Kuwayama) using the parasitoid Tamarixia radiata (Waterston) or entomopathogenic fungi has been attempted, but there have been few published studies on their potential interactions when used together. We studied the effect of prior residency time on the outcomes of interactions between T. radiata and the fungal pathogens Beauveria bassiana and Metarhizium anisopliae in D. citri nymphs. In the first experiment, nymphs infected with fungi were exposed to the parasitoid after 0, 24 and 72 h. Next, nymphs with parasitoids at different developmental stages (eggs, larvae or pupae) were exposed to fungal inoculation. The greatest proportion of fungus-infected nymphs occurred when they were inoculated 72 h prior to parasitoid exposure. The lowest parasitism rate occurred in nymphs that had been infected by fungi 72 h prior to parasitoid exposure. The number of nymphs used for host-feeding by the parasitoid was similar, regardless of how advanced the fungal infection was. When fungal inoculations were made to parasitized nymphs with different developmental stages of the parasitoid, the greatest proportion becoming infected occurred in nymphs with parasitoid eggs. The overall longevity of adult parasitoids emerging from control and fungal-infected treatments was similar; however, the longevity of adult parasitoids emerging from nymphs which had been inoculated with parasitoid larvae were lowest, with the greatest effect observed for the M. anisopliae isolate. The ecological importance and practical recommendations derived from our results are discussed.


Multitrophic interactions Beauveria bassiana Metarhzium anisopliae Parasitism Infection Host feeding 



KHIC received a scholarship from Consejo Nacional de Ciencia y Tecnología (CONACYT) Mexico for her PhD. We are grateful to Cesar Hugo Arredondo-Bernal and personnel at the Centro Nacional de Referencia de Control Biologico for providing the insects. We also thank Dr Roberto Lezama-Gutierrez for allowing us to use the incubators in his laboratory for the experiments reported here.


This research was partially supported by the Fidecomiso 2013—Colegio de Postgraduados.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no financial/commercial conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. Aqueel MA, Leather SR (2013) Virulence of Verticillium lecanii (Z.) against cereal aphids; does timing of infection affect the performance of parasitoids and predators? Pest Manag Sci 69:493–498CrossRefPubMedGoogle Scholar
  2. Arredondo-Bernal HC, Sánchez-González JA, Mellín-Rosas MA (2010) Avances en el control biológico del psílido asiático de los cítricos en México. In: VI Simposio Internacional Cítricola, Tecomán, Colima, pp 121–132Google Scholar
  3. Avery PB, Faull J, Simmonds SJ (2008) Effects of Pacecilomyces fumosoroseus and Encarsia formosa on the control of the greenhouse whitefly: preliminary assessment of a compatibility study. Biocontrol 53:303–316CrossRefGoogle Scholar
  4. Beckage NE, Gelman DB (2004) Wasp parasitoid disruption of host development: implications for new biologically based strategies for insect control. Annu Rev Entomol 49:299–330CrossRefPubMedGoogle Scholar
  5. Bové JM (2006) Huanglongbing: a destructive, newly-emerging, century-old disease of citrus. J Plant Pathol 88:7–37Google Scholar
  6. Carrillo-Benítez MG, Guzmán-Franco AW, Alatorre-Rosas R, Enríquez-Vara JN (2013) Diversity and genetic population structure of fungal pathogens infecting white grub larvae in agricultural soils. Microb Ecol 65:437–449CrossRefPubMedGoogle Scholar
  7. Chen X, Stansly PA (2014) Biology of Tamarixia radiata (Hymenoptera: Eulophidae), parasitoid of the citrus greening disease vector Diaphorina citri (Hemiptera: Psylloidea): a mini review. Fla Entomol 97:1404–1413CrossRefGoogle Scholar
  8. Chow A, Dunlap CA, Jackson MA, Flores D, Pratt JM, Sétamou M (2016) Oviposition behavior and survival of Tamarixia radiata (Hymenoptera: Eulophidae), an ectoparasitoid of the Asian citrus psyllid, Diaphorina citri (Hemiptera: Liviidae), on hosts exposed to an entomopathogenic fungus, Isaria fumosorosea (Hypocreales: Cordycipitaceae), under laboratory conditions. J Econ Entomol 109:1995–2005Google Scholar
  9. Dean KM, Vandenberg JD, Griggs MH, Bauer L, Fierke MK (2012) Susceptibility of two hymenopteran parasitoids of Agrilus planipennis (Coleoptera: Buprestidae) to the entomopathogenic fungus Beauveria bassiana (Ascomycota: Hypocreales). J Invertebr Pathol 109:303–306CrossRefPubMedGoogle Scholar
  10. Emami F, Alichi M, Minaei K (2013) Interaction between the entomopathogenic fungus, Beauveria bassiana (Ascomycota: Hypocreales) and the parasitoid wasp, Aphidius colemani Viereck (Hymenoptera: Braconidae). J Entomol Acarol Res 45:e4CrossRefGoogle Scholar
  11. EPPO/CABI (1996) Diaphorina citri. Quarantine Pests for Europe, 2nd edn. CAB International, WallingfordGoogle Scholar
  12. Fransen JJ, van Lenteren JC (1994) Survival of the parasitoid Encarsia formosa after treatment of parasitized greenhouse whitefly larvae with fungal spores of Aschersonia aleyrodis. Entomol Exp Appl 71:235–243CrossRefGoogle Scholar
  13. Furlong MJ, Pell JK (2005) Interactions between entomopathogenic fungi and arthropod natural enemies. In: Vega FE, Blackwell M (eds) Insect-fungal associations: ecology and evolution. Oxford University Press, Oxford, pp 51–73Google Scholar
  14. Hall DG (2008) Biological Control of Diaphorina citri. I Taller Internacional sobre del Huanglongbing de los cítricos (Candidatus Liberibacter spp) y el psílido asiático de los cítricos (Diaphorinacitri). Hermosillo, Sonora, MéxicoGoogle Scholar
  15. Hall DG, Rohrig E (2015) Bionomics of Asian citrus psyllid (hemiptera: liviidae) associated with orange jasmine hedges in southeast central Florida, with special reference to biological control by Tamarixia radiata. J Econ Entomol 108:1198–1207Google Scholar
  16. Hall DG, Richardson ML, Ammar E, Halbert SE (2013) Asian citrus psyllid, Diaphorina citri, vector of citrus huanglongbing disease. Entomol Exp Appl 146:207–223CrossRefGoogle Scholar
  17. Hoy MA, Nguyen R, Jeyaprakash A (2006) Classical biological control of Asian citrus psyllid in Florida. Florida IPM. Accessed 16 Oct 2015
  18. Jervis MA, Kidd NAC (1986) Host-feeding strategies in hymenopteran parasitoids. Biol Rev 61:395–434CrossRefGoogle Scholar
  19. Kaur S, Kaur HP, Kaur K, Kaur A (2011) Effect of different concentrations of Beauveria bassiana on development and reproductive potential of Spodoptera litura (Fabricius). J Biopestic 4:161–168Google Scholar
  20. Kistner EJ, Amrich R, Castillo M, Strode V, Hoddle MS (2016) Phenology of Asian citrus psyllid (Hemiptera: Liviidae), with special reference to biological control by Tamarixia radiata, in the residential landscape of southern California. J Econ Entomol 109:1047–1057Google Scholar
  21. Llandres AL, Marques GM, Maino JL, Kooijman SALM, Kearney MR, Casas J (2015) A dynamic energy budget for the whole life-cycle of holometabolous insects. Ecol Monogr 85:353–371CrossRefGoogle Scholar
  22. Martins ICF, Silva RJ, Alencar JRDCC, Silva KP, Cividanes FJ, Duarte RT, Agostini LT, Polanczyk RA (2014) Interactions between the entomopathogenic fungi Beauveria bassiana (Ascomycota: Hypocreales) and the aphid parasitoid Diaeretiella rapae (Hymenoptera: Braconidae) on Myzus persicae (Hemiptera: Aphididae). J Econ Entomol 107:933–938CrossRefGoogle Scholar
  23. Michaud JP (2004) Natural mortality of Asian citrus psyllid (Homoptera: Psyllidae) in central Florida. Biol Control 29:260–269CrossRefGoogle Scholar
  24. Nielsen C, Skovgard H, Steenberg T (2005) Effect of Metarhizium anisopliae (Deuteromycotina: Hyphomycetes) on survival and reproduction of the filth fly parasitoid, Spalangia cameroni (Hymenoptera: Pteromalidae). Environ Entomol 34:133–139CrossRefGoogle Scholar
  25. Orduño-Cruz N, Guzmán-Franco AW, Rodríguez-Leyva E, Alatorre-Rosas R, González-Hernández H, Mora-Aguilera G, Rodríguez-Maciel JC (2015a) In vitro selection of a fungal pathogen for use against Diaphorina citri. Biol Control 90:6–15CrossRefGoogle Scholar
  26. Orduño-Cruz N, Guzmán-Franco AW, Rodríguez-Leyva E, Alatorre-Rosas R, González-Hernández H, Mora-Aguilera G (2015b) In vivo selection of entomopathogenic fungal isolates for control of Diaphorina citri (Hemiptera: Liviidae). Biol Control 90:1–5CrossRefGoogle Scholar
  27. Oreste M, Bubici G, Poliseno M, Tarasco E (2016) Effect of Beauveria bassiana and Metarhizium anisopliae on the Trialeurodes vaporariorum-Encarsia formosa system. J Pest Sci 89:153–160CrossRefGoogle Scholar
  28. Payne RW, Murray DA, Harding SA, Baird DB, Soutar DM (2005) GenStat for windows introduction, 8th edn. VSN International, Hemel HempsteadGoogle Scholar
  29. Rossoni C, Loureiro ES, Pereira FF, Kassab SO, Costa DP, Barbosa RH (2014) Selectivity of Metarhizium anisopliae and Beauveria bassiana (Hypocreales: Clavicipitaceae) on adults of Cotesia flavipes (Hymenoptera: Braconidae). Folia Biol 52:269–275CrossRefGoogle Scholar
  30. Roy HE, Pell JK (2000) Interactions between entomopathogenic fungi and other natural enemies: Implications for biological control. Biocontrol Sci Technol 10:737–752CrossRefGoogle Scholar
  31. Sánchez-González JA, Arredondo-Bernal HC (2013) Programa de control biológico del psílido asiático de los cítricos en México. In: Arredondo-Bernal HC, Sánchez-González JA, Mellín-Rosas MA (eds.) Taller subregional de control biológico de Diaphorina citri, vector del HLB. FAO-SENASICA. DGSV, Centro Nacional de Referencia de Control Biológico, Tecoman, Colima, Mexico, pp 26–31Google Scholar
  32. Tamayo-Mejía F, Tamez-Guerra P, Guzmán-Franco AW, Gómez-Flores R (2015) Can Beauveria bassiana Bals. (Vuill) (Ascomycetes: Hypocreales) and Tamarixia triozae (Burks) (Hymenoptera: Eulophidae) be used together for improved biological control of Bactericera cockerelli (Hemiptera: Triozidae)? Biol Control 90:42–48CrossRefGoogle Scholar
  33. Tamayo-Mejía F, Tamez-Guerra P, Guzmán-Franco AW, Gómez-Flores R (2016) Developmental stage affects survival of the ectoparasitoid Tamarixia triozae exposed to the fungus Beauveria bassiana. Biol Control 93:30–36CrossRefGoogle Scholar
  34. Tefera T, Pringle KL (2003) Food consumption by Chilo partellus (Lepidoptera: Pyralidae) larvae infected with Beauveria bassiana and Metarhizium anisopliae and effects of feeding natural versus artificial diets on mortality and mycosis. J Invertebr Pathol 84:220–225CrossRefPubMedGoogle Scholar
  35. UC IPM (2015) UC pest management guidelines—citrus. Accessed 22 Sep 2016
  36. Vinson SB, Iwantsch GF (1980) Host regulation by insect parasitoids. Q Rev Biol 55:143–165CrossRefGoogle Scholar
  37. Welham SJ, Gezan SA, Clark SJ, Mead A (2015) Statistical methods in biology. CRC, Boca RatonGoogle Scholar
  38. Willers D, Lehmann-Danzinger H, Führer E (1982) Antibaterial and antimycotic effect of a newly discovered secretion form larvae of an endoparasitoid insect, Pimpla turionellae L. (Hym.). Arch Microbiol 133:225–229CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Karla H. Ibarra-Cortés
    • 1
  • Héctor González-Hernández
    • 1
  • Ariel W. Guzmán-Franco
    • 1
    Email author
  • Laura D. Ortega-Arenas
    • 1
  • Juan A. Villanueva-Jiménez
    • 2
  • Agustín Robles-Bermúdez
    • 3
  1. 1.Posgrado en Fitosanidad - Entomología y AcarologíaColegio de PostgraduadosTexcocoMexico
  2. 2.Colegio de Postgraduados, Campus VeracruzVeracruzMexico
  3. 3.Facultad de AgronomíaUniversidad Autónoma de NayaritXaliscoMexico

Personalised recommendations